# Current fluctuations and relaxation rates of the asymmetric exclusion process 

Caley Finn<br>University of Melbourne

September 2011

PRL 107 (2011), 010602 (de Gier, Essler)
arXiv:1107.2744 (de Gier, Finn, Sorrell)

## The Asymmetric Exclusion Process (ASEP)

Non-equilibrium system describing the diffusion of hard-core particles along a one-dimensional chain


We will make use of the parameterisation

$$
a=\kappa_{\alpha, \gamma}^{+}, \quad b=\kappa_{\beta, \delta}^{+}, \quad c=\kappa_{\alpha, \gamma}^{-}, \quad d=\kappa_{\beta, \delta}^{-}
$$

where $\kappa_{\alpha, \gamma}^{ \pm}$are the solutions of

$$
\alpha \kappa_{\alpha, \gamma}^{2}+(p-q-\alpha-\gamma) \kappa_{\alpha, \gamma}+\gamma=0
$$

## Transition Matrix

- Hopping rules encoded by the transition matrix

$$
M=m_{1}+\sum_{i=1}^{L-1} m_{i, i+1}+m_{L}
$$

- e.g. left boundary

$$
\left.m_{1}=\begin{array}{c}
|0\rangle \\
|0\rangle \\
|1\rangle
\end{array} \begin{array}{cc}
-\alpha & \gamma \\
\alpha & -\gamma
\end{array}\right)
$$

- Related to Hamiltonian of the $X X Z$ spin chain with non-diagonal open boundaries by a similarity transformation

$$
M \rightarrow H_{X X Z}=\sum_{j=1}^{L-1} \sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta \sigma_{j}^{z} \sigma_{j+1}^{z}+\text { b.t. }
$$

## Master Equation

Time evolution governed by a master equation:

- Probability distribution of configurations

$$
|P(t)\rangle=\sum_{\boldsymbol{\tau}} P(\boldsymbol{\tau} \mid t)|\boldsymbol{\tau}\rangle
$$

- Time evolution

$$
\frac{\mathrm{d}}{\mathrm{~d} t}|P(t)\rangle=M|P(t)\rangle
$$

- Formal solution

$$
|P(t)\rangle=\exp (M t)|P(0)\rangle
$$

- Late time behaviour given by eigenvalues with largest real parts

$$
|P(t)\rangle \simeq a_{0}\left|\psi_{0}\right\rangle+a_{1} e^{\mathcal{E}_{1} t}\left|\psi_{1}\right\rangle
$$

where $M\left|\psi_{0}\right\rangle=0 \quad M\left|\psi_{1}\right\rangle=\mathcal{E}_{1}\left|\psi_{1}\right\rangle$

## Current Fluctuations

- Interested in the probabillity distribution of $Q_{1}(t)$, the total time-integrated current
- Calculate the quantity

$$
E(\lambda)=\lim _{L \rightarrow \infty} \lim _{t \rightarrow \infty} \frac{1}{t} \log \left\langle e^{\lambda Q_{1}(t)}\right\rangle
$$

- The generating function $\left\langle e^{\lambda Q_{t}(t)}\right\rangle$ encodes moments of the distribution

$$
\begin{array}{ll}
\lim _{t \rightarrow \infty} \frac{\left\langle Q_{1}\right\rangle}{t} & \text { Bulk current } \\
\lim _{t \rightarrow \infty} \frac{\left\langle Q_{1}^{2}\right\rangle-\left\langle Q_{1}\right\rangle^{2}}{t} & \text { Fluctuations }
\end{array}
$$

## Generalised transition matrix

- Introduce a fugacity $e^{\lambda}$ at the first site

$$
m_{1}=\left(\begin{array}{cc}
-\alpha & \gamma e^{-\lambda} \\
\alpha e^{\lambda} & -\gamma
\end{array}\right)
$$

- $E(\lambda)$ is the largest eigenvalue of the generalised "transition matrix" $M(\lambda)$
- Eigenvalues of $M(\lambda)$ from Bethe ansatz method when parameters satisfy

$$
\left(q^{L / 2+k}-e^{\lambda}\right)\left(e^{\lambda}-q^{L / 2-k-1} a b c d\right)=0
$$

where $k \in \mathbb{Z},|k| \leq L / 2$ (and have set $p=1$ )

- Constrains $\lambda$ to discrete sequence of values


## The Bethe ansatz

- Two sets of Bethe equations for the open XXZ Hamiltonian
- To calculate $E(\lambda)$, require the lowest eigenvalue, given by

$$
E(\lambda)=\sum_{j=1}^{L / 2+k} \frac{(1-q)^{2} z_{j}}{\left(1-z_{j}\right)\left(1-q z_{j}\right)}=\sum_{j=1}^{N} \varepsilon\left(z_{j}\right)
$$

- $N=L / 2+k$ Bethe roots, $z_{j}$, solutions of Bethe equations

$$
Y_{L}\left(z_{j}\right)=\frac{2 \pi}{L} l_{j}, \quad j=1, \ldots, \frac{L}{2}+k
$$

- $I_{j}$ are integers, $Y_{L}$ is the counting function

$$
i Y_{L}(z)=g(z)+\frac{1}{L} g_{b}(z)+\frac{1}{L} \sum_{j=1}^{N} K\left(z_{j}, z\right)
$$

- Eigenvalue of first excited state given by second set


## Sequence (S1)

- Define the sequence (S1)

$$
\lambda_{n}^{(1)}=n \ln (q), \quad n=0,1,2 \ldots
$$

satisfying first constraint with $k=-L / 2+n$

- For $\lambda=\lambda_{n}^{(1)}, N=n$ Bethe roots

$$
z_{j}=-\frac{q^{j-1}}{a}+\mathcal{O}\left(e^{-\mu_{j} L}\right), \quad j=1, \ldots, n
$$

- Ground state energy

$$
E=\sum_{j=1}^{n} \varepsilon\left(-\frac{q^{j-1}}{a}\right)=(1-q)\left(\frac{a}{a+1}-\frac{a}{a+q^{n}}\right)
$$

- Restoring $p, \lambda_{n}^{(1)}\left(q^{n}=e^{\lambda_{n}^{(1)}}\right)$

$$
E\left(\lambda_{n}^{(1)}\right)=(p-q) \frac{a\left(e^{\lambda_{n}^{(1)}}-1\right)}{(1+a)\left(e^{\lambda_{n}^{(1)}}+a\right)}
$$

## Structure of the (S1) solution

- Counting function

$$
i Y_{L}(z)=g(z)+\frac{1}{L} g_{b}(z)+\frac{1}{L} \sum_{j=1}^{N} K\left(z_{j}, z\right)
$$

- $z_{1}=-\frac{1}{a}+\mathcal{O}\left(e^{-\mu_{1} L}\right)$ from pole of $g_{b}$

$$
g_{b}(z)=\ldots+\ln \left[-\frac{1+a z}{a+q z} \frac{1+c z}{c+q z}\right]+\ldots
$$

- $q$-shifts $z_{j}=-\frac{q^{j-1}}{a}+\mathcal{O}\left(e^{-\mu_{j} L}\right)$ from poles of $K$

$$
K(w, z)=-\ln (w)-\ln \left(\frac{1-q z / w}{1-q w / z} \frac{1-q^{2} w z}{1-w z}\right)
$$

## Sequence (S2)

- Define the sequence (S2)

$$
\lambda_{n}^{(2)}=\ln \left(a b c d q^{n-1}\right), \quad n=0,1,2, \ldots
$$

satisfying second constraint with $k=L / 2-n$

- $N=L-n$ Bethe roots

- Assume the form of the root distribution holds as $L \rightarrow \infty$


## Integral equation for the counting function

- Define contour of integration enclosing the Bethe roots

- Use the residue theorem to write the sum over roots as an integral

$$
\begin{aligned}
i \mathbf{Y}_{\mathrm{L}}(z) & =g(z)+\frac{1}{L} g_{\mathrm{b}}(z) \\
& +\oint_{C_{1}+C_{2}} \frac{d w}{4 \pi i} \mathbf{K}(w, z) \mathbf{Y}_{\mathrm{L}}^{\prime}(w) \cot \left(\frac{1}{2} L \mathbf{Y}_{\mathrm{L}}(w)\right)
\end{aligned}
$$

## Saddle point approximation



- Rewrite integral equation, then approximate for $L$ large

$$
\begin{aligned}
i Y_{L}(z) & =g(z)+\frac{1}{L} g_{\mathrm{b}}(z)+\int_{\xi^{*}}^{\xi} K(w, z) Y_{L}(w) d w \\
& +\int_{C_{1}} \frac{K(w, z) Y_{L}^{\prime}(w)}{1-e^{-i Y_{L}(w)}} d w+\int_{C_{2}} \frac{K(w, z) Y_{L}^{\prime}(w)}{e^{i L Y_{L}(w)}-1} d w
\end{aligned}
$$

## Saddle point approximation



- Rewrite integral equation, then approximate for $L$ large

$$
\begin{aligned}
i Y_{L}(z) & =g(z)+\frac{1}{L} g_{\mathrm{b}}(z)+\int_{\xi^{*}}^{\xi} K(w, z) Y_{L}(w) d w \\
& +\int_{C_{1}} \frac{K(w, z) Y_{L}^{\prime}(w)}{1-\mathbf{e}^{-i \mathbf{i} Y_{\mathrm{L}}(\mathbf{w})}} d w+\int_{C_{2}} \frac{K(w, z) Y_{L}^{\prime}(w)}{\mathbf{e}^{\mathrm{iL} Y_{\mathrm{L}}(\mathbf{w})}-\mathbf{1}} d w
\end{aligned}
$$

## Saddle point approximation



- Rewrite integral equation, then approximate for $L$ large

$$
\begin{aligned}
i Y_{L}(z) & =g(z)+\frac{1}{L} g_{\mathrm{b}}(z)+\int_{\xi^{*}}^{\xi} K(w, z) Y_{L}(w) d w \\
& +\int_{C_{1}} \frac{K(w, z) Y_{L}^{\prime}(w)}{\mathbf{1}-\mathbf{e}^{-i \mathbf{i} Y_{\mathrm{L}}(\mathbf{w})}} d w+\int_{C_{2}} \frac{K(w, z) Y_{L}^{\prime}(w)}{\mathbf{e}^{\mathrm{iLY} Y_{\mathrm{L}}(\mathbf{w})-\mathbf{1}}} d w \\
& \simeq g(z)+\frac{1}{L} g_{\mathrm{b}}(z)+\int_{\xi^{*}}^{\xi} K(w, z) Y_{L}(w) d w+\mathcal{O}\left(L^{-2}\right)
\end{aligned}
$$

## Asymptotic solution

Solve the integral equation:

- Find solution as asymptotic series in inverse powers of $L$

$$
Y_{L}(z)=y_{0}(z)+\frac{1}{L} y_{1}(z)+\mathcal{O}\left(L^{-1}\right)
$$

- Similar analysis gives the asymptotic expression for the eigenvalue

$$
E\left(\lambda_{n}^{(2)}\right)=(p-q) \frac{a\left(e^{\lambda_{n}^{(2)}}-1\right)}{(1+a)\left(e^{\lambda_{n}^{(2)}}+a\right)}
$$

- Same form as (S1) result - conjecture it holds for all $\lambda$

$$
E(\lambda)=(p-q) \frac{a\left(e^{\lambda}-1\right)}{(1+a)\left(e^{\lambda}+a\right)}
$$

## Results

- First moment reproduces the result for bulk current

$$
\lim _{t \rightarrow \infty} \frac{\left\langle Q_{1}\right\rangle}{t}=\left.\frac{d E}{d \lambda}\right|_{\lambda=0}=(p-q) \rho(1-\rho)
$$

where $\rho=1 /(1+a)$

- Second moment gives the current fluctuations, $q \rightarrow 0$ agrees with result for TASEP [Derrida, Evans, Mallick 1995]

$$
\lim _{t \rightarrow \infty} \frac{\left\langle Q_{1}^{2}\right\rangle-\left\langle Q_{1}\right\rangle^{2}}{t}=\left.\frac{d E^{2}}{d \lambda^{2}}\right|_{\lambda=0}=(p-q) \rho(1-\rho)(1-2 \rho)
$$

## Relaxation rate

- Relaxation rate is the first excited eigenvalue

$$
|P(t)\rangle \simeq a_{0}\left|\psi_{0}\right\rangle+a_{1} e^{\mathcal{E}_{1} t}\left|\psi_{1}\right\rangle
$$

- Given by the second set of Bethe equations, with eigenvalue

$$
\mathcal{E}=-\mathcal{E}_{0}+\sum_{j=1}^{L-1} \frac{(1-q)^{2} z_{j}}{\left(1-z_{j}\right)\left(1-q z_{j}\right)}
$$

## Relaxation rate - the reverse bias regime

- Boundary rates oppose the bulk bias



## The reverse bias regime - structure of solution



- m pairs of isolated roots

$$
z_{k}^{ \pm}=-q^{k} c \pm e^{-\nu_{k}^{ \pm} L}, \quad k=0, \ldots, m-1
$$

- $L-2 m-1$ roots $z_{j}$ on the contour
- Analyse using combination of methods from (S1) and (S2)


## Counting function for contour of roots



- Isolated roots telescope
- Work with scaled roots $\zeta_{j}=q^{-(m-1)} z_{j}$, dropping $\mathcal{O}\left(q^{m}\right)$ terms
- Bethe equations for the contour of roots

$$
\bar{Y}_{L-2 m}\left(\zeta_{j}\right)=\frac{2 \pi}{L-2 m} l_{j}, \quad j=1, \ldots, L-2 m-1
$$

- Counting function

$$
i \bar{Y}_{L-2 m}(\zeta)=\bar{g}(\zeta)+\frac{1}{L-2 m} \bar{g}_{\mathrm{b}}(\zeta)+\frac{1}{L-2 m} \sum_{I=1}^{L-2 m-1} \bar{K}\left(\zeta_{I}, \zeta\right)
$$

## Asymptotic solution

Asymptotic solution for $L-2 m$ large

- Relaxation rate for the reverse bias regime

$$
\mathcal{E}_{1}^{(\text {reverse })}=\frac{1-q}{(L-2 m)^{2}} \frac{\pi^{2}}{\left(a^{-1}-a\right)}+\mathcal{O}\left((L-2 m)^{-3}\right)
$$

- Compare forward bias regime [de Gier, Essler 2008]

$$
\mathcal{E}_{1}^{(\text {forward })}=\frac{1-q}{L^{2}} \frac{\pi^{2}}{\left(a^{-1}-a\right)}+\mathcal{O}\left(L^{-3}\right)
$$

## Physical interpretation

- Forward bias vs Reverse bias

$$
\frac{1-q}{L^{2}} \frac{\pi^{2}}{\left(a^{-1}-a\right)} \quad \text { vs } \quad \frac{1-q}{(L-2 m)^{2}} \frac{\pi^{2}}{\left(a^{-1}-a\right)}
$$

- Suggests the system fills completely over a length $2 m$ from the right


## $10000000000000 \cdot 0 \cdot 0 \cdot 0$

- Behaves as in the forward bias regime with a reduced system size $L-2 m$ (forms a uniformly distributed domain wall)
- Calculation of the stationary density profile required to confirm this picture


## Conclusion

- Results come from detailed analysis of the Bethe root structure
- Derived expression characterising the asymptotic current distribution for the open ASEP
- Found the relaxation rate in the reverse bias regime differs from the forward bias regime
- To confirm the physical picture this suggests requires calculation of correlation functions for the ASEP, or equivalently the $X X Z$ spin chain with non-diagonal open boundaries

