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Generalized density matrix and correlation functions
Algebraic structure

Analytic structure: p and ®

Asymptotics and functional equations
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Universal finite size corrections in the isotropic case



o Anisotropic Heisenberg chain

A=ch(n)=(q+q")/2



o Anisotropic Heisenberg chain

L
Ho=J Y (G}(_1Gf+6;/710}/+A6jz_1sz)
j=— L1

A=ch(n)=(q+g7")/2
o Measurable quantities related to the spectrum of H; :

(1) free energy per lattice site

! h8?
A(T.h)= =T Jim . Intrexp{—% + TL}

— TD, one-point functions, CFT from low T



Introduction

Hamiltonian and spectrum

o Anisotropic Heisenberg chain

L
— X X Y 4 ¥4 z
Ho=d ZL:H (GHGI- +0/ 0] +AG,,1G,)
j==

A=ch(n)=(q+q")/2
o Measurable quantities related to the spectrum of J(; :

(1) free energy per lattice site

H(T.h) = —T lim ~Intre { AT th}
=-—T lim — Xpy —— + —
’ R U R &
— TD, one-point functions, CFT from low T
o (2) Ground state energy of finite system
Hy
E(L) = lim T2d7Intre {——}
( ) Tlao T xp T

— finite-size corrections, CFT
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o Measurable quantities related to the eigenvectors:

(©) ool %+ )
O)rp= limtrp,O,  pL= -

In particular, for O product of local operators, e.g.

— ~Z2~2
0 =oj0;,



Introduction

Density matrix and correlation functions

o Measurable quantities related to the eigenvectors:

exp{ 2 + 151
trexp{—@—khfii}

In particular, for O product of local operators, e.g.

<O>T‘h = lim trp. O, pL=
L—so0

Z 2
0 =070,
0 lim; . pr does not exist. In order to solve problem for all O consider
Dy (T, h) = Jim Ay 41, 0.n+1,..L PL

(reduced) density matrix
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Introduction

Density matrix and correlation functions

o Measurable quantities related to the eigenvectors:

exp{ 2 + 151
trexp{—@—khfii}

In particular, for O product of local operators, e.g.

<O>T‘h = lim trp. O, pL=
L—so0

0 =ojo?
0 lim; . pr does not exist. In order to solve problem for all O consider
Dy, (T h) = lim tri 1. 0n41,...,LPL
L—»o0
(reduced) density matrix
o Then, for operators of finite length,
(O)r.p= lim tr1, . Dpy r (T, M)Op1 )

Jnductive limit*
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Introduction

Partition function

04 O OF: Of O 051 Of 0 OO

N rows
_ 2H, > o
H(1/NT)H(—1/NT) =1— =L + O(1/N .
(1/NT)t(—1/NT) NNT (1/N%) Jf:(qm)
IJian(?(1/NT)t(—1/NT))5 =e /T B

tq quantum transfer matrix, dominant eigenvalue A(A|x)
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The dominant eigenvalue can be represented as

AMR) = xn+ [ S elu—2)in(1 +aw)

with the bare energy e(A) = cth(A) — cth(A+n),



The dominant eigenvalue can be represented as

_ dy
AQ) =+ [ K eu—2)in(1 -+ afu,x)
with the bare energy e(A) = cth(A) — cth(A+n),

the auxiliary function defined by

~ 2Jsh(n)e(r)

T /. ko~ i1+ a(ee 1))

In(a(A,x)) = —2Kn



Introduction

Eigenvalue and integral equation

The dominant eigenvalue can be represented as

_ L
ACMK) = Kk +/€ L el n(1 -+ a(u 1))
with the bare energy e(A) = cth(A) —cth(A +1),

the auxiliary function defined by
2Jsh(n)e(r) du
- - = - 1
/emeoOL #)In(1 +au, x))

In(a(A, k) = —2xn 7
"
/(?f
and kernel and integration contour
Ka(M) = g *cth(h—n) — q%cth(A+n) N
S S
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Algebraic structure

Generalized density matrix and reduction
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Algebraic structure

Generalized density matrix and reduction

UHUTRU A5 04: 0y

777777777777777 . —> |h+to h
i~ L to infinity
(G55 sits i alatls i i i el il it iy 2
T -
K+OuF! K — —
aL A0k 4 a)EA(0] )"
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Algebraic structure

Generalized density matrix and reduction

VO) 04: 04:

) 1“””‘””A””Aé""l’m‘7}” i — & 4 S —

B
,,,,,,,,,,, . —— |htal h

|1 L to infinity

B

'« L L
aL A0k 4 a)EA(0] )"

‘ = Dy, (&1, -+, &nl T, x, 0, N) ‘ Y.Bj = 1/T, generalized density matrix

o reduction from left and right o where
tr1{ Dy Gt Bl )G} = p(E1) Dl (B Bl @) p(a) = 7“(2('5*)“)
K
t"m{D[1,m](§1 PERR 7E_,m‘K7(X)} = D[1,m—1](§1 g ’gm—‘l ‘K7(X)
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o Reduction determines one-point
functions

DL(E)\__ 1 pE)—q
(DJIr(é)) g < q*—p(€) >
o Physical correlation functions for
a—0,
p(1) =14+ m(T,h)2na+ O(a?)

with h = 2xn T and with the
magnetization m(T, h)



Algebraic structure

Space of quasi-local operators (BJMST 07-09)

o Reduction determines one-point
functions

DI _ 1 p(&)—a @
(Da&)) S q*-q @ ( q*—p(8) >
o Physical correlation functions for
o — 0,

p(1) =1+ m(T,h)2no+ O(a?)

with h = 2xkn T and with the
magnetization m( T, h)

o Consider an infinite chain now. An
operator O is called local if it acts like
the identity outside a chain segment
of finite length. The local operators
span a vector space.
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Algebraic structure

Space of quasi-local operators (BJMST 07-09)

© Reduction determines one-point o Define S(k) = 1 ¥ ..c%.If O is local, we call
functions ¢2*S(0) 9 quasi-local. The vector space of all

(Di (g)) _ 1 (p(é) _ q—a> such operators is denoteéd .W“’ the restriction
D~ (&) q q*—p(&) of O onto a segment [k, (] is denoted O 4

o Physical correlation functions for
o — 0,

(04 — Ol
—q

o For a lattice of infinite extension in horizontal
direction we define the functional
Z¥ : Wy — C as an inductive limit

p(1) =14 m(T,h)2no+ 0(o?) Z5(X) =

with h = 2xn T and with the [”_f:;t"ftim ot (p’é(1 )D[%’H p (x, (x))([%+1 ,é’])

magnetization m(T, h)

o Consider arll infinite chain.n.ow. An. For X = qzas(k—1)X[k ] We have
operator O is called local if it acts like ’
the identity outside a chain segment Z5(X) = pk’1 (1) (X
= K,
of finite length. The local operators < [ 'm]>K
span a vector space. Z¥ can be interpreted as the statistical

operator on Wy,
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o We say that X € Wq, has spin s if
[S(=0),X] = sX. For s € Z denote the
spin-s subspace of W as W s.
Consider

W(a) = @ Woc—s,s

S=—o0



Algebraic structure

Fermions on the space of quasi-local operators

o We say that X € Wq, has spin s if
[S(=0),X] = sX. For s € Z denote the
spin-s subspace of W as W s.
Consider

W(a) = @ Wor—s,s

S=—o0

o On W(®) exist special Fermi operators
with mode expansion (BJMST 07, 08)

b(Q) = io(c2 —1)Pb,
p:
(0 =02 L (@1
p:

=

e(Q)=C¢* Y (C~1)"Pep

p=0

¢*(() = (o2 i (@1 e
p:
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Algebraic structure

Fermions on the space of quasi-local operators

o We say that X € Wq, has spin s if o They mutually anti-commute, except
[S(=0),X] = sX. For s € Z denote the .
spin-s subspace of W, as W, s. {b(C1).b"(C2)} = —w(C2/C1)
Consider {e(C1),e"(C)} = w(Gi/C2)
> o 2+1
W = P Woss where y({) = Cz((éq))
S=—o0

o On W(®) exist special Fermi operators
with mode expansion (BJMST 07, 08)

b(Q) = io(c2 —1)Pb,
P2
(0 =02 L (@1
pa

=

e(Q)=C¢* Y (C~1)"Pep

p=0

¢*(() = (o2 i (@1 e
pa
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Algebraic structure

Fermions on the space of quasi-local operators

o We say that X € Wq, has spin s if o They mutually anti-commute, except
[S(=0),X] = sX. For s € Z denote the .
spin-s subspace of W, as W, s. {b(C1).b"(C2)} = —w(C2/C1)
Consider {e(C1).¢"(C2)} = w(C1/C2)
> o 2+1
W = P Woss where y({) = Cz((éq))
S=—o0

o An operator

o On W(®) exist special Fermi operators () = i (Cz _ 1),071‘*
with mode expansion (BJMST 07, 08) o= P
o v _ ists which commutes with the Fermions.
b _ o 2 1)"Pp exIs
©)=¢ p;o(c ) P Its first Fourier mode tj is (twice) the shift

. i ik operator
b*() =C*"2 Y (C—1)" "o,
p=1

e(Q)=C¢* Y (C~1)"Pep

p=0

¢*(() = (o2 i (@1 e
pa
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Algebraic structure

Fermions on the space of quasi-local operators

o We say that X € Wq, has spin s if o They mutually anti-commute, except
[S(=0),X] = sX. For s € Z denote the .
spin-s subspace of W, as W, s. {b(C1).b"(C2)} = —w(C2/C1)
Consider {e(C1).¢"(C2)} = w(C1/C2)
> o 2+1
W = P Woss where y({) = Cz((éq))
S=—o0

o An operator

On W(®) exist special Fermi t .- 1
] n exis spega ermi operators t*(C) _ Z (C_:Z _ 1)p t;s;
with mode expansion (BJMST 07, 08) =1
o v _ ists which commutes with the Fermions.
b — o 2 1)"Pb exis
©)=¢ p;o(c ) P Its first Fourier mode tj is (twice) the shift
operator

b* — o+2 2 1 p—1 b*
(C) ¢ l;(c ) P o All Fourier modes have block structure

=

C(C) = C(x ZO(CZ - 1)7pcp t;; Wo—s,s = Wo—s,s
p—

¢*(() = (o2 i (@1 e
p:

b:pr :Wa,5+1,5,1 — Wotfs,s

c;:bp Wo—s—1,s+1 = Wa-ss
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o THEOREM (BJMS 09): The Fourier modes

20.5(0
T Lty by b el e (P*50)
meZ,j,keN,p1 >p2>--->pj
G>q>-->qcand g > > >y
generate a basis of Wq o (over the Fock
vacuum ¢225(0))



Algebraic structure

Two fundamental theorems

o THEOREM (BJMS 09): The Fourier modes
20.S(0
T Lty by by el e, (P*0))

m€Z7/ak6N’p1 2[32 > ZP/,
gL>@>-->qrandr > > >0k
generate a basis of Wq o (over the Fock
vacuum g2S(0))

o THEOREM (JMS 08): 3o : C? — C such that
ZM{E(O)X} =2p(5)Z*{X}

(b (X} = [ e o2 elOX)

2
ZK{c*(g)X} = 7/r 2(:2&2 m(g,g)zx{b(g)x}

where I encircles the point £2 = 1
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Algebraic structure

Two fundamental theorems

o THEOREM (BJMS 09): The Fourier modes o In particular
’Cmt;f71 .. .t;jb; ... b’;kc’,: .. .cfk(qzas(o)) p(c) _ %ZK{t*(C)qu(O)}
mezZ,j,keN,p1 >2p>-->pj 2as(0
G >q > >aqandr >r > >0 0(¢,€) = Z°{b*({)e" (§)**)}
generate a basis of Weo (over the Fock Explicit description of ® see below
vacuum ¢2*S(0))

o THEOREM (JMS 08): 3o : C? — C such that
ZM{E(O)X} =2p(5)Z*{X}

(b (X} = [ e o2 elOX)

2
ZK{c*(Q)X} = 7/r 2(:2&2 m(g,g)zx{b(g)x}

where I encircles the point £2 = 1
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Algebraic structure

Two fundamental theorems

o THEOREM (BJMS 09): The Fourier modes
20.5(0
T Lty by by el e, (P*0))

mezZ,j,keN,p1 >2p>-->pj

gL>@>-->qrandr > > >0k
generate a basis of Wq o (over the Fock
vacuum ¢2*5(0))

o THEOREM (JMS 08): 3o : C? — C such that

ZH{v(OX} =2p(0)Z"{x}
Z*{b* ()X} = /275%2

2
75" (O)X} = 7/r 2(:2&2 o(

where I encircles the point £2 = 1

Frank Gohmann (BUW — FG Physik)

o(§,8)Z"{c(&)X}

o In particular
() = 5Z°{t" (P}
o(§.8) = Z°{b"({)e" (€)g?*()}

Explicit description of m see below

o COROLLARY: Factorization lemma

ZE(G7). . T (Eb (E) b ()
€6 ()P0} =
i.j:d1,... C )] Hzp(gp

K
S1954 {b(&)X} Taylor expansion of both sides in

(£8)2 —1 yields Z* on every basis
element! It follows that any correlation
function is a polynomial in p, ® and
their derivatives

Some properties 7.9.2011 10/30



Analvtic properties

The function  — characterization by integral equations

o THEOREM (BG 09): The function @ can be fully described by means of solutions
of linear and non-linear integral equations.

]
X2 V) vy, valk, o) = 2W (v, v2) + S Ka(vi=va)+(p(v1) —p(V2)) eth(vi —v2)

where (for vy inside C)

Wi(v1,v2) = [ dmlu) (g cth(u—vs ~m) = (Vi) cth(u— 1)) Gl ve)
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Analvtic properties

The function  — characterization by integral equations

o THEOREM (BG 09): The function @ can be fully described by means of solutions
of linear and non-linear integral equations.

1
e (v, VoK, 0) =20 (v, v2) + S Ka(V1 —V2) + (p(V1) —p(v2)) cth(V1 —V2)
where (for vy inside C)

Wi(v1,v2) = [ dmlu) (g cth(u—vs ~m) = (Vi) cth(u— 1)) Gl ve)

o Here we introduced ‘the Fermi measure’

dm(\) dh

~ 2mip(M)(1 + a(h,x))

o And G is the solution of the linear integral equation

G(\,Vv) :q’“cth(?»—v—n)—p(v)cth(k—v)—l—/@dm(,u)K(x(k—,u)G(u,v)

Frank Gohmann (BUW — FG Physik) Some properties 7.9.2011 11/30



Let { = e*, & = e. Function {~%®(A, ulk, ) is rational in {2, i.e. a ratio of two polyno-
mials P(£2)/Q(L?). As a function of {2 it is then characterized by e.g.:



Analvtic properties

The function ® — characterization by properties

Let { = e*, & = e. Function {~%®(A, ulk, ) is rational in {2, i.e. a ratio of two polyno-
mials P({?)/Q(L?). As a function of {2 it is then characterized by e.g.:

o Pole structure: £*o(A, u|k, o) has N+ 2 simple poles, N of which are located at
the zeros of A(A|x), the remaining two at {? = g*2€?
o Residues at {? = g*2€?

o The degree of the polynomial in the numerator is N+ 2
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Analvtic properties

The function ® — characterization by properties

Let { = e*, & = e. Function {~%®(A, ulk, ) is rational in {2, i.e. a ratio of two polyno-
mials P({?)/Q(L?). As a function of {2 it is then characterized by e.g.:

o Pole structure: £*o(A, u|k, o) has N+ 2 simple poles, N of which are located at
the zeros of A(A|x), the remaining two at {? = g*2€?

o Residues at {? = g*2€?
o The degree of the polynomial in the numerator is N+ 2
o Normalization condition (JMS 09). Define
Af(L) =1(q8) — (g7 'C), Df(L) = f(qt) +1(q~'C) —2p(M)1(C)
B(0 e, ) = (A, k@) + DD AL (L)
Then
OBy, ulk, &) + p(B)O(B; —M,ulk,0) =0, j=1,....N

lim 2 V)@(vq,valk,0) =0, j=1,2
Vj—roo
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Shown in (BG 09) that the functions defined by
the integral equations have these properties

o Wi(A,u) is rational in £2
o Using integral equation for G: Pole
structure and residues at trivial poles



Analvtic properties

The function ®

Shown in (BG 09) that the functions defined by
the integral equations have these properties

o Wi(A,u) is rational in £2

o Using integral equation for G: Pole
structure and residues at trivial poles

o Moreover

W(B),&2) +p(B))g “W!(B;—m,&2)
=p(&2)cth(Bj—v2) —g *cth(B;—v2—m)

which is equivalent to first part of
normalization condition
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Analvtic properties

The function ®

Shown in (BG 09) that the functions defined by
the integral equations have these properties

(*]

(*]

Wi(A, u) is rational in £2

Using integral equation for G: Pole
structure and residues at trivial poles

Moreover

W(B),&2) +p(B))g “W!(B;—m,&2)
=p(&2)cth(Bj—v2) —g *cth(B;—v2—m)
which is equivalent to first part of
normalization condition

Second part must be treated separately
and is equivalent to

_ g %—p(v2)
/e dm(u)G(u,v2) = rer=u
which follows from the asymptotics
limy, 40 G(V1,V2) =0
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Analvtic properties

The function ®

Shown in (BG 09) that the functions defined by
the integral equations have these properties

(*]

(*]

Wi(A, u) is rational in £2

Using integral equation for G: Pole
structure and residues at trivial poles

Moreover

W(B),&2) +p(B))g “W!(B;—m,&2)
=p(&2)cth(Bj—v2) —g *cth(B;—v2—m)
which is equivalent to first part of
normalization condition

Second part must be treated separately
and is equivalent to

_ g %—p(v2)
/e dm(u)G(u,v2) = rer=u
which follows from the asymptotics
limy, 40 G(V1,V2) =0

Frank Gohmann (BUW — FG Physik)

Some properties

o Remark. Consider the following limits:

1. o0 — 0, 2. Trotter limit, 3. rational limit,
4.x—0,5.T—0.Then

efik(w —Vz)

WX = /m dk ———
0 (vi,v2) n 11 ol

rG+5ra-5%)

=1idyIn (L (i
(z=2)0r(1+3)

x=(Vi—Vz)

is the derivative of the spinon-spinon
scattering phase (Faddeev, Takhtadjan
81) satisfying the functional equation

\Ué(XX(\H 7\/2) + ‘US(XX(W — i,Vz)

1 1

_V17V2 V17V27i

at the heart of the solution of the reduced
g-Knizhnik-Zamolodchikov equation
(BJMST 05)
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o The functions p and ® encode all information about the dependence of
the static correlation functions on the physical parameters T, h, L.




Analvtic properties

The functions p and ® — summary

o The functions p and ® encode all information about the dependence of
the static correlation functions on the physical parameters T, h, L.

o We need a good understanding of their analytic and asymptotic
properties. Applications e.g.: (i) universal low temperature or finite
length behaviour of correlation functions of the spin chain, (ii) field
theoretical scaling limits (BJMS 10, JMS 10, 11).

Frank Gohmann (BUW — FG Physik) Some properties 7.9.2011 14 /30



Analvtic properties

The functions p and ® — summary

o The functions p and ® encode all information about the dependence of
the static correlation functions on the physical parameters T, h, L.

o We need a good understanding of their analytic and asymptotic
properties. Applications e.g.: (i) universal low temperature or finite
length behaviour of correlation functions of the spin chain, (ii) field
theoretical scaling limits (BJMS 10, JMS 10, 11).

o The disorder parameter o. modifies the linear integral equations. A factor
of p appears in the measure which seems to complicate their analysis.
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Analvtic properties

The functions p and ® — summary

o The functions p and ® encode all information about the dependence of
the static correlation functions on the physical parameters T, h, L.

o We need a good understanding of their analytic and asymptotic
properties. Applications e.g.: (i) universal low temperature or finite
length behaviour of correlation functions of the spin chain, (ii) field
theoretical scaling limits (BJMS 10, JMS 10, 11).

o The disorder parameter o. modifies the linear integral equations. A factor
of p appears in the measure which seems to complicate their analysis.

o Two examples

@ Asymptotics of the function G(A, V) for A — oo (BG 10) and implications.
@ Universal finite-size corrections for the isotropic Heisenberg chain
(SABGKTT 11).
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o One of the functions we are interested in is the solution of the integral equation
G(¥) = q*oth(h—v—m) =p(v)cth(A—v) + | dm() Ka(r.~)G(11Y)

where v is inside C



ics and functional

Asymptotics of G — the problem

o One of the functions we are interested in is the solution of the integral equation

G\, v) =g *cth(A—v—n)—p(v)cth(A—V) + /e dm(u) Ka(A— 1) G(u,v)
where V is inside C

o The limit limgey 0 G(A,V) = G(e0,V) is not obvious from this equation. It merely
implies the identity

(@®—q %) /e dm(A) G V) = g% — p(v) — G(o,V)

where the integral on the left hand side is unknown as well
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ics and functional

Asymptotics of G — the problem

o One of the functions we are interested in is the solution of the integral equation
G0 V) = g “cth(A—v =) =p(v)cth(.~V)+ [ dm(u) Ka(A—)GseY)

where v is inside C

o The limit limgey 0 G(A,V) = G(e0,V) is not obvious from this equation. It merely
implies the identity

(@®—q %) /e dm(A) G V) = g% — p(v) — G(o,V)

where the integral on the left hand side is unknown as well

o In order to calculate this integral we introduced a function ¢ defined as the
solution of the integral equation

o(M) = ¢ — g%+ /e dm(u) o) Ko (11— 1)

because the dressed function trick applied to G and ¢ implies

(q‘x—q’“)/edm(k)G(k,v):/Cdm(k)c(x)(q’“cth(k—v—n)—p(v)cth(k—v))
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ics and functional

Asymptotics of G — the function ¢

o In order to understand the properties of the ‘dressed charge function’ ¢ we
decomposed the integral equation as

o(1) =™ (1+ [ dm(u)o{u)eth(h—u—1) ~q*(1+ [ dm()o(u)etn (. pr+))
This suggests the definition

00:+m) =1+ | dm(u) () cth(r— 1)
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ics and functional

Asymptotics of G — the function ¢

o In order to understand the properties of the ‘dressed charge function’ ¢ we
decomposed the integral equation as

o(1) =™ (1+ [ dm(u)o{u)eth(h—u—1) ~q*(1+ [ dm()o(u)etn (. pr+))
This suggests the definition

00:+m) =1+ | dm(u) () cth(r— 1)

o Using the TQ-equation and the fact that all Bethe roots A, are located inside C we
conclude that y
N/2
o(Ag)cth(A— Ak +m
o0 +m =1+ y, T k( 0 )
k=1 P(Ak)a’ (Ak)

Thus,
—1+IVX/)2 o (Mk) cth(A — M)
7»;( Cl' 7»;()
from which we can read off the analytic properties of ¢()
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@ Q(A|x)o(A) is an entire function.
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@ ¢ is periodic with period iT.
@ Q(A|x)o(A) is an entire function.
@ The only poles of ¢ are simple poles at the Bethe roots Ak with residues

o(Ax)
P(M)a’ ()

@ ¢ has constant asymptotics for ReA — =+, and

Lim (600 +0(-1) =2

resp—y, O(A) =



ics and functional

Asymptotics of G — the function ¢

@ ¢ is periodic with period im.

@ Q(Ax)0(A) is an entire function.

@ The only poles of ¢ are simple poles at the Bethe roots A, with residues
o(Mk)

p(hi ) (Ak)

@ ¢ has constant asymptotics for ReA — =+, and

Lm (609 +0(-1) =2

resy—y, O(A) =

® Using { = e* we see that ¢ is the ratio of two polynomials of degree N/2in 2.
Thus, N/2+ 1 complex numbers p, . .. JHn 2, C exist, such that

N2 sh(h— k)

o) = Hshx )
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ics and functional

Asymptotics of G — the function ¢

@ ¢ is periodic with period im.
@ Q(Ax)0(A) is an entire function.
@ The only poles of ¢ are simple poles at the Bethe roots A, with residues

o(Ax)
P(Ax)a’ ()

@ ¢ has constant asymptotics for ReA — =+, and

Lm (609 +0(-1) =2

resy—y, O(A) =

® Using { = e* we see that ¢ is the ratio of two polynomials of degree N/2in 2.
Thus, N/2+ 1 complex numbers p, . .. JHn 2, C exist, such that

N/2 sh(n— sh(h —ux)
o =CIl G620

o(A) =q“0(A—n)—q *o(r+n)
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o For arguments of ¢ inside C it is necessary to continue the integral analytically.
Then,
q*“¢(A—m) — g “¢(A+n)
pP(A)(1 +a(2))

o(1) — =1+ [ am(u) (et () = (1)



ics and functional

Asymptotics of G — the function r

o For arguments of ¢ inside C it is necessary to continue the integral analytically.
Then,

g*o(A—m) — g~ %o( 7~+n _ —
o)~ T gy = 1 [ am o(etn (i) = ()

o Two properties of the function r(A):
) r(A) is regular inside C
(i) r(A) has finite constant asymptotics for ReA — oo
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o Using the definitions and of the functions ¢ and r we can now evaluate the integral

/(3 dm(}) (M) (g% cth(A—v —n) — p(v)cth(A V)
=pW)r(v)—q “o(v+n)+q *—p(v)

It follows that
g “o(v+mn) G(=,v)

W= e




ics and functional

Asymptotics of G — the function r

o Using the definitions and of the functions ¢ and r we can now evaluate the integral

/e dm(L)o(A) (g *cth(A—v —n) —p(v)cth(L —V))
=p(W)r(v)—a “o(v+n)+a *—p(v)

It follows that
g *(v+n)  Gleo,v)

p(v) p(v)

r(v) =

o This is roughly the way we went in our original derivation. At this point we used
that we already knew that G(eo,v) = 0. Inserting this above we obtained

AMx+ ) Q(A[K)d(A)
=q“"*a(A) QA —n[x)o(A —n) + g~ *d(1) QA +n[Kx)o(A+n)
which is the TQ-equation for the function Q(A|k)¢(A) with the known solution
Q(AMx)0(A) = Q(A[k+ o)

From here we reversed the argument (BG 10)
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ics and functional

Dressed charge and Q-function

o Summary: Setting

o) = TR o) = aolh )~ a %(h-+m)

the ‘dressed charge function’ ¢ satisfies
o(1) = " =g+ [ dm{u) o(u)Ka(u—2)

and can be also expressed as

o(h) = g~ %+ [ o(ukalu—1)

o This allows us to calculate the asymptotics limgey 0. G(A,V) = 0 and the
asymptotics of ®(A, u|k, o) for Red — oo,
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o We can formulate a ‘dual problem’ for which everything but the last step is very
similar as above. We define functions G and G by

G(M,v) = —g%cth(h—v+n) +p(A)cth(A —v) + /e dm(u) GM ) K1 — )

(M) =q % —q*+ /e dm(u) KA — 15 (1)



ics and functional

A dual picture

o We can formulate a ‘dual problem’ for which everything but the last step is very
similar as above. We define functions G and G by

G v) = —qo‘cth(k—v—&-n)-l—p(?u)cth(?u—v)+/edm(p)@(?u7,u)Ka(p—v)7

(M) =g —q"+ /@ dm(u) Kee (A — 1Yo (u)

o The asymptotics of G is related with the asymptotics of G,
G(0) = —0(—c0), T(—c0) =—0(c)
For G(A,v) we know the asymptotics only for Re A — oo,

o g*—q ¥
G(oo,V) = ———o(v
(=) = G g l¥)

but G(v,) is unknown
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As before we can introduce functions $ and r with similar analytic properties and satis-
fying, in particular
o p—
S(A) =g *¢(A—m) —g*o(A+n)



As before we can introduce functions 5 and r with similar analytic properties and satis-
fying, in particular
o p—
S(A) =g *¢(A—m) —g*o(A+n)

- g %A —n) — g*d(A+n)
o) = (1 T a(h)

=r(}) (%)



As before we can introduce functions ¢ and 7 with similar analytic properties and satis-
fying, in particular

o p—
S(A) = q “p(A—m) — g*0(A+n)
° )~ B )
— g %(h—1)—¢ n_ . .
O mia oy W W
(€]

() G(he)
M=y e m



As before we can introduce functions ¢ and 7 with similar analytic properties and satis-
fying, in particular

o —
S(A) =g “0(A—n)—q“0(r+n)
° ““9(A—n)—g"9(A+m)
—oy 4 -n)—¢ n_. i
(€]

o @0m) B(e)
M=y e m

But what is 7(A), what is §(A), what is G(A,0)?



ics and functional

0 for high temperature

o It follows from equation (x) and from the similar equation for ¢ that
o) (a*0(A =) =g *0(A+n)) —06(A) (g~ *0(h—n) — g*¢(A+m))
= regular inside C

o This equation can be used to calculate the coefficients of the high-temperature
expansion of of ¢ in terms of those of the high-temperature expansion of ¢
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ics and functional

0 for high temperature

o It follows from equation (x) and from the similar equation for ¢ that

o) (g%0(h—m) — g *o(A+n)) —0(2) (g~ “6(A —m) — g*0(r+m))

= regular inside C

o This equation can be used to calculate the coefficients of the high-temperature
expansion of of ¢ in terms of those of the high-temperature expansion of ¢

o Same technique applies to the resolvent of the linear integral equations with our
given kernel and measure. It can be expressed in terms of a function ® (A, u),

R(v1,V2) = Ko (V1 —V2) + / - K (vt — W) D) Kor(— v2)

e 2mi
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ics and functional

0 for high temperature

o It follows from equation (x) and from the similar equation for ¢ that

o) (g%0(h—m) — g *o(A+n)) —0(2) (g~ “6(A —m) — g*0(r+m))

= regular inside C

o This equation can be used to calculate the coefficients of the high-temperature
expansion of of ¢ in terms of those of the high-temperature expansion of ¢

o Same technique applies to the resolvent of the linear integral equations with our
given kernel and measure. It can be expressed in terms of a function ® (A, u),

R(v1,V2) = Ko (V1 —V2) + / - K (vt — W) D) Kor(— v2)

e 2mi

o We wish to apply this technique in order to calculate the asymptotic expansion of
o for large x in the CFT-scaling limit
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Finite-size corrections

Finite-size corrections in the isotropic limit

THEOREM (SABGKTT 11). The finite size correction for all

correlation functions of the isotropic Heisenberg chain behave
like 1/L2.

For up to eight lattice sites we calculated them analytically (in
terms of Riemann {-functions of integer arguments)
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Finite-size corrections

Finite-size corrections in the isotropic limit

Consider the finite length case (total length L) now (DGHK 07). Then in the isotropic
limit with no external flux applied

O I 6
Vit =26 -8+ [ e ))[1+b ™

where g(i) are the solutions of the integral equations

_ = dygy)
(H)() =" 3 -
) = hmE—0) +/7m 2n(1 1+ 67 ()) Y

~  dygs () .
_/ —————K(x—y+i—i0)
—2n(1+6 (y))
- = dygl )
() — n 3 _
N A AiPeriu = (L
_ (+)
dygF’ v) K(x —y—i+i0)

—w 2n(14+0671(y))
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Finite-size corrections

Finite-size corrections in the isotropic limit

the kernel is

, THEr(-4%
K(x) =idxIn j_i)r(1 i)
2= 2)(1+7%)

and the auxiliary functions follow from
Inb (x) =LIn(th(nx/2))

+/;g%5<(x—y)ln(1 +b (y))—[i:—i%(x—y+i—i0)ln(1 +5 (y))

Inb (x) =LIn(th(nx/2))

+/: %x(x—y)m@ ) —/

= %:K(X_y_iﬂo)m(wb )

—oo
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Finite-size corrections

Finite-size corrections in the isotropic limit

the kernel is
1 ix ix
1o ix
K(x) = id,m| 2 21— 2)
(z-3)r(1+3%)
and the auxiliary functions follow from
Inbs(x) =LIn(th(x/2)) — — 0
° oh(n(&—x))

+/: %K(X—y) In(1+bs(y)) —/:O%K(x—y—i-i—io)lnﬁ +55())

Inbs(x) =LIn(th(x/2)) — WS*X))

+/:. %K(X—y) In(1+b5(y)) —/j;%j((x—y—i—f—io)lnﬁ +05(y))

For the large L analysis we modify these equations by introducing a new parameter &
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Then B
7 dsbs(x)

(+), .y _ TOsbs(x)
g0 = 0 L 600

L b5(X)

o) =

)
8=0 8=0



Then
_ T Isbs(x)

4 7 05b5(x)
9% 0= T |,

L b5(0) |5,

RO

Defining

Fer o) = 2 5 ~&e) + [ el 05(0)(1 +B5(0)

we obtain

Vi(&y,&2) = 1{35/:(&1752)

=0



Finite-size corrections

Finite-size corrections in the isotropic limit

Then _
_ T dsbs(x)

() () = ™ 9sb5(x) _ T
L b5(x)

% YT D0

o)

8=0

=0
Defining

Ferte) = 0o K(E — &)+ [ i1+ 8a0)(1 4 55(4)

we obtain

ACRAREENZCRA)

=0

But F can be analyzed the same way as the dominant eigenvalue. Employing the dilog

trick we obtain )
oL

Wi(&1,82) ~2K(&1 — &) — 32

asymptotically for large L

ch(n(&1 +&2))
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The zz-correlation functions are of the form

472
(0f6%,1)1 = (o707, ) (1+ 777



Finite-size corrections

Asymptotics of asymptotics

The zz-correlation functions are of the form

472
(07071} = (0707) (14 15

The two-point correlator for a primary field of scaling dimension x in CFT

c /L \¥ ©C xT2r?
(L) = rax (sm(nr/L)) ~ T 6L2

For the zz-correlation functions we have to set x = 1/2, whence

2
YOFT — r
r 24
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Finite-size corrections

Asymptotics of asymptotics

The zz-correlation functions are of the form

472
(07071} = (0707) (14 15

The two-point correlator for a primary field of scaling dimension x in CFT

c /L \¥ ©C xT2r?
(L) = rax (sm(nr/L)) ~ T 6L2

For the zz-correlation functions we have to set x = 1/2, whence

2
YOFT — r
r 24
roo| 2 3 4 5 6 7
Y 0.0470 0.1070 0.3268 0.5014 0.9013 1.1957 1.7761

Y/YeFT | 11283 0.6419 0.8714 0.7521 0.8652 0.7971  0.8699

The coefficients v, for r = 1,...,7 and the ratio of y,/ycF"
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Conclusions

Conclusions

o The ‘physical part’ of the static correlation functions of the XXZ chain is
determined by two functions, p and ®

o These can be described in terms of the solutions of well-behaved linear
and non-linear integral equations

o The asymptotic analysis of their solutions may yield rather explicit
results e.g. for short-range correlation functions

o Example: the static ground state correlation functions of the XXZ chain
behave like 1/L2 for large L

o Yet, our understanding of these functions is still far from complete. We
need to gain a better understanding of the integral equations when the
disorder parameter o, is non-zero. Then we might be able to obtain e.g.
the large x asymptotics in the CFT-scaling limit (cf. BIMS 10)
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