Factorizing F-matrices - a diagrammatic approach

Stephen M ${ }^{\text {c Ateer }}$ with Michael Wheeler

September 8, 2011

Outline

(1) Introduction
(2) Definitions and statement of theorem
(3) Lemmas
(4) Proof of theorem
(5) Discussion

Introduction

- I present a new expression for the $s l(n) F$-matrix

Introduction

- I present a new expression for the $\operatorname{sl}(n) F$-matrix
- it is equivalent to the expression of Albert, Boos, Flume and Ruhlig

Introduction

- I present a new expression for the $\operatorname{sl}(n) F$-matrix
- it is equivalent to the expression of Albert, Boos, Flume and Ruhlig
- this expression is in terms of partial F-matrices à la Maillet and Sanchez de Santos

Introduction

- I present a new expression for the $s l(n) F$-matrix
- it is equivalent to the expression of Albert, Boos, Flume and Ruhlig
- this expression is in terms of partial F-matrices à la Maillet and Sanchez de Santos
- I present an easy proof of the factorizing property using this expression

Introduction

- I present a new expression for the $s l(n) F$-matrix
- it is equivalent to the expression of Albert, Boos, Flume and Ruhlig
- this expression is in terms of partial F-matrices à la Maillet and Sanchez de Santos
- I present an easy proof of the factorizing property using this expression
- I use diagrammatic tensor notation throughout

Definitions and statement of theorem

- several definitions are presented which lead up the definition of the F-matrix

Definitions and statement of theorem

- several definitions are presented which lead up the definition of the F-matrix
- the main result is stated

$$
\left(R_{12}\right)_{i_{1} i_{2}}^{j_{1} j_{2}}=\sum_{i_{1}}^{j_{2}}= \begin{cases}a\left(\lambda_{1}, \lambda_{2}\right), & i_{1}=i_{2}=j_{1}=j_{2} \\ b\left(\lambda_{1}, \lambda_{2}\right), & i_{1}=j_{1}, i_{2}=j_{2}, i_{1} \neq i_{2} \\ c_{+}\left(\lambda_{1}, \lambda_{2}\right), & i_{1}=j_{2}, i_{2}=j_{1}, i_{1}<i_{2} \\ c_{-}\left(\lambda_{1}, \lambda_{2}\right), & i_{1}=j_{2}, i_{2}=j_{1}, i_{1}>i_{2} \\ 0, & \text { otherwise }\end{cases}
$$

$$
\left(R_{12}\right)_{i_{1} i_{2}}^{j_{1} j_{2}}=\sum_{i_{1}}^{j_{2}}= \begin{cases}a\left(\lambda_{1}, \lambda_{2}\right), & i_{1}=i_{2}=j_{1}=j_{2} \\ b\left(\lambda_{1}, \lambda_{2}\right), & i_{1}=j_{1}, i_{2}=j_{2}, i_{1} \neq i_{2} \\ c_{+}\left(\lambda_{1}, \lambda_{2}\right), & i_{1}=j_{2}, i_{2}=j_{1}, i_{1}<i_{2} \\ c_{-}\left(\lambda_{1}, \lambda_{2}\right), & i_{1}=j_{2}, i_{2}=j_{1}, i_{1}>i_{2} \\ 0, & \text { otherwise }\end{cases}
$$

- the object in the middle represents the components of the R-matrix in diagrammatic tensor notation

$$
\left(R_{12}\right)_{i_{1} i_{2}}^{j_{1} j_{2}}=\sum_{i_{1}}^{j_{2}}= \begin{cases}a\left(\lambda_{1}, \lambda_{2}\right), & i_{1}=i_{2}=j_{1}=j_{2} \\ b\left(\lambda_{1}, \lambda_{2}\right), & i_{1}=j_{1}, i_{2}=j_{2}, i_{1} \neq i_{2} \\ c_{+}\left(\lambda_{1}, \lambda_{2}\right), & i_{1}=j_{2}, i_{2}=j_{1}, i_{1}<i_{2} \\ c_{-}\left(\lambda_{1}, \lambda_{2}\right), & i_{1}=j_{2}, i_{2}=j_{1}, i_{1}>i_{2} \\ 0, & \text { otherwise }\end{cases}
$$

- the object in the middle represents the components of the R-matrix in diagrammatic tensor notation
- where
$a(\lambda, \mu)=1, b(\lambda, \mu)=\frac{\lambda-\mu}{\lambda-\mu+\eta}, c_{ \pm}(\lambda, \mu)=\frac{\eta}{\lambda-\mu+\eta},(X X X)$

$$
\left(R_{12}\right)_{i_{1} i_{2}}^{j_{1} j_{2}}=\sum_{i_{1}}^{j_{2}}= \begin{cases}a\left(\lambda_{1}, \lambda_{2}\right), & i_{1}=i_{2}=j_{1}=j_{2} \\ b\left(\lambda_{1}, \lambda_{2}\right), & i_{1}=j_{1}, i_{2}=j_{2}, i_{1} \neq i_{2} \\ c_{+}\left(\lambda_{1}, \lambda_{2}\right), & i_{1}=j_{2}, i_{2}=j_{1}, i_{1}<i_{2} \\ c_{-}\left(\lambda_{1}, \lambda_{2}\right), & i_{1}=j_{2}, i_{2}=j_{1}, i_{1}>i_{2} \\ 0, & \text { otherwise }\end{cases}
$$

- the object in the middle represents the components of the R-matrix in diagrammatic tensor notation
- where
$a(\lambda, \mu)=1, b(\lambda, \mu)=\frac{\lambda-\mu}{\lambda-\mu+\eta}, c_{ \pm}(\lambda, \mu)=\frac{\eta}{\lambda-\mu+\eta},(X X X)$ or $a(\lambda, \mu)=1, b(\lambda, \mu)=\frac{\sinh (\lambda-\mu)}{\sinh (\lambda-\mu+\eta)}, c_{ \pm}(\lambda, \mu)=\frac{e^{ \pm(\lambda-\mu)} \sinh (\eta)}{\sinh (\lambda-\mu+\eta)},(X X Z)$

- draw a bipartite graph of σ
- each intersection is an R-matrix

- draw a bipartite graph of σ
- each intersection is an R-matrix
- joining an arm to a leg corresponds to contraction

- draw a bipartite graph of σ
- each intersection is an R-matrix
- joining an arm to a leg corresponds to contraction
- any graph is equivalent via $\mathrm{Y}-\mathrm{B} \&$ unitarity

$$
\left(I_{12}\right)_{i_{1} i_{2}}^{j_{1} j_{2}}=\sum_{i_{1}}^{j_{2}}= \begin{cases}1, & \text { if } i_{1}=j_{1} \text { and } i_{2}=j_{2} \\ 0, & \text { otherwise }\end{cases}
$$

0

- this is a string of $(N-1)$ tier- $k R$-matrices contracted with each other

○

$$
F_{1 \ldots N}^{k}=F_{1,2}^{k} F_{12,3}^{k} \ldots F_{1 \ldots(N-1), N}^{k}
$$

$$
F_{1 \ldots N}^{k}=F_{1,2}^{k} F_{12,3}^{k} \ldots F_{1 \ldots(N-1), N}^{k}
$$

$$
F_{1 \ldots N}= \begin{cases}F_{1 \ldots N}^{2} F_{N \ldots 1}^{3} \ldots F_{1 \ldots N}^{n}, & n \text { even } \\ F_{N \ldots 1}^{2} F_{1 \ldots N}^{3} \ldots F_{1 \ldots N}^{n}, & n \text { odd }\end{cases}
$$

$$
F_{1 \ldots N}= \begin{cases}F_{1 \ldots N}^{2} F_{N \ldots 1}^{3} \ldots F_{1 \ldots N}^{n}, & n \text { even } \\ F_{N \ldots 1}^{2} F_{1 \ldots N}^{3} \ldots F_{1 \ldots N}^{n}, & n \text { odd }\end{cases}
$$

$$
F_{\sigma(1) \ldots \sigma(N)} R^{\sigma}=F_{1 \ldots N}
$$

$$
F_{\sigma(1) \ldots \sigma(N)} R^{\sigma}=F_{1 \ldots N}
$$

Lemmas

- tier- k Yang-Baxter equation

Lemmas

- tier- k Yang-Baxter equation
- Lemma 1, for passing a tier- $k R$-matrix through a single tier- k partial F-matrix

Lemmas

- tier- k Yang-Baxter equation
- Lemma 1, for passing a tier- $k R$-matrix through a single tier- k partial F-matrix
- Lemma 2, for passing a tier- $k R$-matrix through a pair of tier- k partial F-matrix

Lemmas

- tier- k Yang-Baxter equation
- Lemma 1, for passing a tier- $k R$-matrix through a single tier- k partial F-matrix
- Lemma 2, for passing a tier- $k R$-matrix through a pair of tier- k partial F-matrix
- Lemma 3, for passing a tier- $k R$-matrix through a tier- $k F$-matrix

Lemmas

- tier- k Yang-Baxter equation
- Lemma 1, for passing a tier- $k R$-matrix through a single tier- k partial F-matrix
- Lemma 2, for passing a tier- $k R$-matrix through a pair of tier- k partial F-matrix
- Lemma 3, for passing a tier- $k R$-matrix through a tier- $k F$-matrix
- Lemma 4, for passing a tier- $k R$-matrix through an F-matrix

Proof. Two cases:

- all colors $\leq k$
- all R-matrices, so true by standard Yang-Baxter

Proof. Two cases:

- all colors $\leq k$
- all R-matrices, so true by standard Yang-Baxter
- one or more colors $>k$
- at least two of the vertices are identity matrices and the statement holds

Proof. Two cases:

- all colors $\leq k$
- all R-matrices, so true by standard Yang-Baxter
- one or more colors $>k$
- at least two of the vertices are identity matrices and the statement holds
- for example:

$$
F_{1 \ldots(i+1) i \ldots(N-1), N}^{k} R_{i(i+1)}^{k}=R_{i(i+1)}^{k} F_{1 \ldots(N-1), N}^{k}
$$

$$
F_{1 \ldots(i+1) i \ldots(N-1), N}^{k} R_{i(i+1)}^{k}=R_{i(i+1)}^{k} F_{1 \ldots(N-1), N}^{k}
$$

$$
F_{1 \ldots(i+1) i \ldots(N-1), N}^{k} R_{i(i+1)}^{k}=R_{i(i+1)}^{k} F_{1 \ldots(N-1), N}^{k}
$$

Proof. Two cases:
Case 1: $i_{N}=k$
Case 2: $i_{N} \neq k$

Case 1, $i_{N}=k$:

Case 2, $i_{N} \neq k$:

$$
\begin{aligned}
& F_{1 \ldots(N-2), N}^{k} F_{1 \ldots(N-2) N,(N-1)}^{k} R_{(N-1) N}^{k} \\
= & R_{N(N-1)}^{k-1} F_{1 \ldots(N-2),(N-1)}^{k} F_{1 \ldots(N-1), N}^{k}
\end{aligned}
$$

$$
\begin{aligned}
& F_{1 \ldots(N-2), N}^{k} F_{1 \ldots(N-2) N,(N-1)}^{k} R_{(N-1) N}^{k} \\
= & R_{N(N-1)}^{k-1} F_{1 \ldots(N-2),(N-1)}^{k} F_{1 \ldots(N-1), N}^{k}
\end{aligned}
$$

$$
\begin{aligned}
& F_{1 \ldots(N-2), N}^{k} F_{1 \ldots(N-2) N,(N-1)}^{k} R_{(N-1) N}^{k} \\
= & R_{N(N-1)}^{k-1} F_{1 \ldots(N-2),(N-1)}^{k} F_{1 \ldots(N-1), N}^{k}
\end{aligned}
$$

Proof. Four cases:
Case 1: $i_{N-1}=k, \quad i_{N}=k$
Case 2: $i_{N-1} \neq k, \quad i_{N} \neq k$
Case 3: $i_{N-1} \neq k, \quad i_{N}=k$
Case 4: $i_{N-1}=k, \quad i_{N} \neq k$

Case 1, $i_{(N-1)}=k, i_{N}=k$:

Case 2, $i_{(N-1)} \neq k, i_{N} \neq k$:

Case $3, i_{N-1} \neq k, i_{N}=k$:

Case $4, i_{N-1}=k, i_{N} \neq k$:

$$
F_{1 \ldots(i+1) i \ldots N}^{k} R_{i(i+1)}^{k}=R_{(i+1) i}^{k-1} F_{1 \ldots N}^{k}
$$

$$
F_{1 \ldots(i+1) i \ldots N}^{k} R_{i(i+1)}^{k}=R_{(i+1) i}^{k-1} F_{1 \ldots N}^{k}
$$

$$
F_{1 \ldots(i+1) i \ldots N}^{k} R_{i(i+1)}^{k}=R_{(i+1) i}^{k-1} F_{1 \ldots N}^{k}
$$

tier $k=$

Proof. Obvious!

$$
\begin{aligned}
F_{1 \ldots(i+1) i \ldots N} R_{i(i+1)} & = \begin{cases}I_{(i+1) i} F_{1 \ldots N}, & n \text { even } \\
I_{i(i+1)} F_{1 \ldots N}, & n \text { odd }\end{cases} \\
& =F_{1 \ldots N}
\end{aligned}
$$

$$
\begin{aligned}
F_{1 \ldots(i+1) i \ldots N} R_{i(i+1)} & = \begin{cases}I_{(i+1) i} F_{1 \ldots N}, & n \text { even } \\
I_{i(i+1)} F_{1 \ldots N}, & n \text { odd }\end{cases} \\
& =F_{1 \ldots N}
\end{aligned}
$$

Proof. Observe that

Proof. Observe that

- $R_{12}^{n}=R_{12}$ and $R_{12}^{1}=I_{12}$

Proof. Observe that

- $R_{12}^{n}=R_{12}$ and $R_{12}^{1}=I_{12}$
- then ...

Proof. Observe that

- $R_{12}^{n}=R_{12}$ and $R_{12}^{1}=I_{12}$
- then ... obvious!

$$
F_{\sigma(1) \ldots \sigma(N)} R^{\sigma}=F_{1 \ldots N}
$$

$$
F_{\sigma(1) \ldots \sigma(N)} R^{\sigma}=F_{1 \ldots N}
$$

$$
F_{\sigma(1) \ldots \sigma(N)} R^{\sigma}=F_{1 \ldots N}
$$

Proof. Obvious!

Discussion

Questions and comments.

