0000	0000	
	00000	

Factorizing *F*-matrices – a diagrammatic approach

Stephen M^cAteer with Michael Wheeler

September 8, 2011

	0 000 00000 00	
	00	

Outline

1 Introduction

2 Definitions and statement of theorem

Introduction			
	0000	0000	
	0	00000	

• I present a new expression for the sl(n) *F*-matrix

Introduction		
	0 000 00000 00	

- I present a new expression for the sl(n) *F*-matrix
- it is equivalent to the expression of Albert, Boos, Flume and Ruhlig

Introduction		
	0 000 00000 00	

- I present a new expression for the sl(n) *F*-matrix
- it is equivalent to the expression of Albert, Boos, Flume and Ruhlig
- this expression is in terms of partial *F*-matrices à la Maillet and Sanchez de Santos

Introduction		
	0 000 00000 00	

- I present a new expression for the sl(n) *F*-matrix
- it is equivalent to the expression of Albert, Boos, Flume and Ruhlig
- this expression is in terms of partial *F*-matrices à la Maillet and Sanchez de Santos
- I present an easy proof of the factorizing property using this expression

Introduction		
	0 000 00000 00	

- I present a new expression for the sl(n) *F*-matrix
- it is equivalent to the expression of Albert, Boos, Flume and Ruhlig
- this expression is in terms of partial *F*-matrices à la Maillet and Sanchez de Santos
- I present an easy proof of the factorizing property using this expression
- I use diagrammatic tensor notation throughout

Definitions and statement of theorem		
0000	0000	
0	00000	

Definitions and statement of theorem

- several definitions are presented which lead up the definition of the $F\mbox{-matrix}$

Definitions and statement of theorem		
0000	0000	
0	00000	

Definitions and statement of theorem

- several definitions are presented which lead up the definition of the $F\mbox{-matrix}$
- the main result is stated

	Definitions and statement of theorem		
	•000 000 0 0	0 000 00000 0	
the tier-k R-matrix			

$$(R_{12})_{i_1i_2}^{j_1j_2} = \bigwedge_{i_1 \dots i_2}^{j_2 \dots j_1} = \begin{cases} a(\lambda_1,\lambda_2), & i_1 = i_2 = j_1 = j_2 \\ b(\lambda_1,\lambda_2), & i_1 = j_1, i_2 = j_2, i_1 \neq i_2 \\ c_+(\lambda_1,\lambda_2), & i_1 = j_2, i_2 = j_1, i_1 < i_2 \\ c_-(\lambda_1,\lambda_2), & i_1 = j_2, i_2 = j_1, i_1 > i_2 \\ 0, & \text{otherwise} \end{cases}$$

	Definitions and statement of theorem		
	•••• ••• • • • •	0 000 00000 0 00	
the tier-k R-matrix			

$$(R_{12})_{i_1i_2}^{j_1j_2} = \bigwedge_{i_1 \ i_2}^{j_2 \ j_1} = \begin{cases} a(\lambda_1,\lambda_2), & i_1 = i_2 = j_1 = j_2 \\ b(\lambda_1,\lambda_2), & i_1 = j_1, i_2 = j_2, i_1 \neq i_2 \\ c_+(\lambda_1,\lambda_2), & i_1 = j_2, i_2 = j_1, i_1 < i_2 \\ c_-(\lambda_1,\lambda_2), & i_1 = j_2, i_2 = j_1, i_1 > i_2 \\ 0, & \text{otherwise} \end{cases}$$

• the object in the middle represents the components of the *R*-matrix in diagrammatic tensor notation

	Definitions and statement of theorem		
	• • • • • • • • • • • • • • • • • • •	0 000 00000 0 00	
the tier la P matrix			

$$(R_{12})_{i_1i_2}^{j_1j_2} = \bigwedge_{i_1 \ i_2}^{j_2 \ j_1} = \begin{cases} a(\lambda_1,\lambda_2), & i_1 = i_2 = j_1 = j_2 \\ b(\lambda_1,\lambda_2), & i_1 = j_1, i_2 = j_2, i_1 \neq i_2 \\ c_+(\lambda_1,\lambda_2), & i_1 = j_2, i_2 = j_1, i_1 < i_2 \\ c_-(\lambda_1,\lambda_2), & i_1 = j_2, i_2 = j_1, i_1 > i_2 \\ 0, & \text{otherwise} \end{cases}$$

- the object in the middle represents the components of the *R*-matrix in diagrammatic tensor notation
- where

$$a(\lambda,\mu) = 1, b(\lambda,\mu) = \frac{\lambda-\mu}{\lambda-\mu+\eta}, c_{\pm}(\lambda,\mu) = \frac{\eta}{\lambda-\mu+\eta}, \text{ (XXX)}$$

	Definitions and statement of theorem		
	• • • • • • • • • • • • • • • • • • •	0 000 00000 0 00	
the tier la P matrix			

$$(R_{12})_{i_1i_2}^{j_1j_2} = \bigwedge_{i_1 \dots i_2}^{j_2 \dots j_1} = \begin{cases} a(\lambda_1,\lambda_2), & i_1 = i_2 = j_1 = j_2 \\ b(\lambda_1,\lambda_2), & i_1 = j_1, i_2 = j_2, i_1 \neq i_2 \\ c_+(\lambda_1,\lambda_2), & i_1 = j_2, i_2 = j_1, i_1 < i_2 \\ c_-(\lambda_1,\lambda_2), & i_1 = j_2, i_2 = j_1, i_1 > i_2 \\ 0, & \text{otherwise} \end{cases}$$

- the object in the middle represents the components of the *R*-matrix in diagrammatic tensor notation
- where

$$\begin{split} a(\lambda,\mu) &= 1, b(\lambda,\mu) = \frac{\lambda-\mu}{\lambda-\mu+\eta}, c_{\pm}(\lambda,\mu) = \frac{\eta}{\lambda-\mu+\eta}, \left(\mathsf{XXX}\right) \text{ or} \\ a(\lambda,\mu) &= 1, b(\lambda,\mu) = \frac{\sinh(\lambda-\mu)}{\sinh(\lambda-\mu+\eta)}, c_{\pm}(\lambda,\mu) = \frac{e^{\pm(\lambda-\mu)}\sinh(\eta)}{\sinh(\lambda-\mu+\eta)}, \left(\mathsf{XXZ}\right) \end{split}$$

	Definitions and statement of theorem		
	○●○○ ○○○ ○ ○	0 000 00000 0 00	
the tier-k R-matrix			

	Definitions and statement of theorem		
	000 000 0 0 0	0 000 00000 0 00	
the tier la P motrix			

- draw a bipartite graph of σ

	Definitions and statement of theorem		
		0 000 00000 0 00	
the tier- b R-matrix			

- draw a bipartite graph of σ
- each intersection is an *R*-matrix

	Definitions and statement of theorem		
		0 000 00000 0 00	
the tier- b R-matrix			

- draw a bipartite graph of σ
- each intersection is an *R*-matrix
- joining an arm to a leg corresponds to contraction

	Definitions and statement of theorem		
		0 000 00000 0 00	
the tier- b R-matrix			

- draw a bipartite graph of σ
- each intersection is an *R*-matrix
- joining an arm to a leg corresponds to contraction
- any graph is equivalent via Y-B & unitarity

	Definitions and statement of theorem		
	0000 000	0000	
the tier-k R-matrix			

$$(I_{12})_{i_1i_2}^{j_1j_2} = \bigvee_{i_1 \dots i_2}^{j_2 \dots j_1} = \begin{cases} 1, \\ 0, \end{cases}$$

if
$$i_1 = j_1$$
 and $i_2 = j_2$ otherwise

	Definitions and statement of theorem		
	000 000 0 0 0	0 000 00000 0 0	
the tier-k R-matrix			

	Definitions and statement of theorem		
	000	000	
the tier- k partial F -	matrix		

$$(R_{1...(N-1),N}^{k})_{i_{1}...i_{N}}^{j_{1}...j_{N}} = \underbrace{\bigcup_{i_{N-1}}^{j_{N}} \sum_{i_{N-2}}^{j_{N-1}} \cdots \sum_{i_{2}}^{j_{2}} \sum_{i_{1}}^{j_{1}}}_{i_{N-2}} \cdots \underbrace{\bigcup_{i_{2}}^{j_{2}} \sum_{i_{1}}^{j_{1}}}_{i_{N}} \text{tier } k$$

	Definitions and statement of theorem		
	000	000	
the tier- k partial F_{-1}	matrix		

$$(R_{1...(N-1),N}^{k})_{i_{1}...i_{N}}^{j_{1}...j_{N}} = \underbrace{\bigcup_{i_{N-1}}^{j_{N}} \sum_{i_{N-2}}^{j_{N-1}} \cdots \sum_{i_{2}}^{j_{2}} \sum_{i_{1}}^{j_{1}}}_{i_{2}} \text{tier } k$$

- this is a string of $\left(N-1\right)$ tier- k R-matrices contracted with each other

	Definitions and statement of theorem		
		0000	
the tier- k partial F -r	natrix		

$$(I_{1...(N-1),N})_{i_{1}...i_{N}}^{j_{1}...j_{N}} = \underbrace{\downarrow_{j_{N} \ j_{N-1} \ j_{N-2}}^{j_{N} \ j_{N-2} \ j_{2} \ j_{1}}}_{i_{N-1} \ i_{N-2} \ i_{2} \ i_{1} \ i_{N}}$$

	Definitions and statement of theorem		
	0000		
	000		
		00	
the tier- k partial F_{-1}	matrix		

$$(F_{1\dots(N-1),N}^{k})_{i_{1}\dots i_{N}}^{j_{1}\dots j_{N}} = \underbrace{\downarrow_{i_{N-1}}^{j_{N-1}} \dots \downarrow_{i_{2}}^{j_{2}} \dots \downarrow_{i_{2}}^{j_{1}}}_{i_{N}} \text{tier } k$$

$$= \begin{cases} \underbrace{\downarrow_{i_{N-1}}^{i_{N-1}} \dots \downarrow_{i_{2}}^{k} \dots \downarrow_{i_{N}}^{k}}_{i_{N}}, & \text{if } i_{N} = k, \end{cases}$$

$$= \begin{cases} \underbrace{\downarrow_{i_{N-1}}^{i_{N-1}} \dots \downarrow_{i_{2}}^{k} \dots \downarrow_{i_{N}}^{k}}_{i_{N}}, & \text{if } i_{N} = k, \end{cases}$$

	Definitions and statement of theorem		
		0 000 00000 0	
		00	
the tier- k F -matrix			

$$F_{1...N}^k = F_{1,2}^k F_{12,3}^k \dots F_{1...(N-1),N}^k$$

	Definitions and statement of theorem		
		0 000 00000 0 00	
the tier-b E-matrix			

$$F_{1...N}^k = F_{1,2}^k F_{12,3}^k \dots F_{1...(N-1),N}^k$$

	Definitions and statement of theorem		
		0 000 00000 0 00	
the F matrix			

$$F_{1...N} = \begin{cases} F_{1...N}^2 F_{N...1}^3 \dots F_{1...N}^n, & n \text{ even} \\ \\ F_{N...1}^2 F_{1...N}^3 \dots F_{1...N}^n, & n \text{ odd} \end{cases}$$

	Definitions and statement of theorem		
	0000	0000	
		00000	
	0		
the F matrix			

	Definitions and statement of theorem		
	0000	0000	
statement of theorem			

$$F_{\sigma(1)\dots\sigma(N)}R^{\sigma} = F_{1\dots N}$$

	Definitions and statement of theorem		
	0000 000 0 0	0 000 00000 0	
		00	
statement of theorem			

 $F_{\sigma(1)\ldots\sigma(N)}R^{\sigma} = F_{1\ldots N}$

tier 2

	Lemmas	
0000	0000	
	00000	

• tier-k Yang-Baxter equation

	Lemmas	
0000	0000	
0	00000	

- tier-k Yang-Baxter equation
- Lemma 1, for passing a tier- $k \ R$ -matrix through a single tier- $k \ partial \ F$ -matrix

	Lemmas	
	0 000 00000 0	
	00	

- tier-k Yang-Baxter equation
- Lemma 1, for passing a tier-k R-matrix through a single tier-k partial F-matrix
- Lemma 2, for passing a tier-k R-matrix through a pair of tier-k partial F-matrix

	Lemmas	
0000	0000	
0	00000	

- tier-k Yang-Baxter equation
- Lemma 1, for passing a tier-k R-matrix through a single tier-k partial F-matrix
- Lemma 2, for passing a tier-k R-matrix through a pair of tier-k partial F-matrix
- Lemma 3, for passing a tier-k R-matrix through a tier-k F-matrix

	Lemmas	
	0 000 00000 0	
	00	

- tier-k Yang-Baxter equation
- Lemma 1, for passing a tier-k R-matrix through a single tier-k partial F-matrix
- Lemma 2, for passing a tier-k R-matrix through a pair of tier-k partial F-matrix
- Lemma 3, for passing a tier-k R-matrix through a tier-k F-matrix
- Lemma 4, for passing a tier-k R-matrix through an F-matrix

		Lemmas	
	0000	•	
	000	000	
		00	
Yang-Baxter equation			

		Lemmas	
	0000	000	
	o o	00000	
Vang-Bayter equation			

- all colors $\leq k$
 - all *R*-matrices, so true by standard Yang-Baxter

		Lemmas	
	0000	000	
	0	00000	
Vang-Bayter equation			

- all colors $\leq k$
 - all *R*-matrices, so true by standard Yang-Baxter
- $\bullet\,$ one or more colors >k
 - at least two of the vertices are identity matrices and the statement holds

		Lemmas	
	0000	000	
	o o	00000	
Vang-Bayter equation			

- all colors $\leq k$
 - all *R*-matrices, so true by standard Yang-Baxter
- $\bullet\,$ one or more colors >k
 - at least two of the vertices are identity matrices and the statement holds
 - for example:

		Lemmas	
	0000	° • • • •	
	0	00000	
lemma 1			

$$F_{1\dots(i+1)i\dots(N-1),N}^{k}R_{i(i+1)}^{k} = R_{i(i+1)}^{k}F_{1\dots(N-1),N}^{k}$$

		Lemmas	
	0000	000	
		00000	
lemma 1			

$$F^k_{1...(i+1)i...(N-1),N}R^k_{i(i+1)} = R^k_{i(i+1)}F^k_{1...(N-1),N}$$

		Lemmas	
	0000	000	
	0	00000	
		0 00	
lemma 1			

$$F^k_{1...(i+1)i...(N-1),N}R^k_{i(i+1)} = R^k_{i(i+1)}F^k_{1...(N-1),N}$$

Case 1: $i_N = k$ Case 2: $i_N \neq k$

		Lemmas	
	0000	000	
	o o	00000	
1			

Case 1, $i_N = k$:

		Lemmas	
	0000	0	
	000	000	
		00	
lemma 1			

Case 2, $i_N \neq k$:

		Lemmas	
	0000	0000	
	0	00000	
Jemma 2			

$$\begin{split} F^k_{1...(N-2),N} F^k_{1...(N-2)N,(N-1)} R^k_{(N-1)N} \\ &= R^{k-1}_{N(N-1)} F^k_{1...(N-2),(N-1)} F^k_{1...(N-1),N} \end{split}$$

		Lemmas	
	0000 000 0 0	0 000 00000	
		00	
Lawrence O			

$$\begin{split} F^k_{1...(N-2),N} F^k_{1...(N-2)N,(N-1)} R^k_{(N-1)N} \\ &= R^{k-1}_{N(N-1)} F^k_{1...(N-2),(N-1)} F^k_{1...(N-1),N} \end{split}$$

		Lemmas	
	0000	0000	
	0	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	
1 2			

$$\begin{split} F^k_{1...(N-2),N} F^k_{1...(N-2)N,(N-1)} R^k_{(N-1)N} \\ &= R^{k-1}_{N(N-1)} F^k_{1...(N-2),(N-1)} F^k_{1...(N-1),N} \end{split}$$

Proof. Four cases:

Case 1: $i_{N-1} = k$, $i_N = k$ Case 2: $i_{N-1} \neq k$, $i_N \neq k$ Case 3: $i_{N-1} \neq k$, $i_N = k$ Case 4: $i_{N-1} = k$, $i_N \neq k$

	Lemmas	
	0 000 0 000 00	
	00	

lemma 2

Case 1,
$$i_{(N-1)} = k, i_N = k$$
:

		Lemmas	
	0000	0 000	
		00000	
		000	
lemma 2			

Case 2, $i_{(N-1)} \neq k, i_N \neq k$:

Definitions and statement of theorem	Lemmas	
	0000	
0	00000	

lemma 2

Case 3,
$$i_{N-1} \neq k, i_N = k$$
:

	Lemmas	
	0 00000	
	ŏo	

lemma 2

Case 4, $i_{N-1} = k, i_N \neq k$:

		Lemmas	
	000	000	
		•	
Jemma 3			

$$F_{1...(i+1)i...N}^{k} R_{i(i+1)}^{k} = R_{(i+1)i}^{k-1} F_{1...N}^{k}$$

		Lemmas	
	0000		
	000	000	
		00000	
		00	
lomma 2			

$$F_{1...(i+1)i...N}^{k}R_{i(i+1)}^{k} = R_{(i+1)i}^{k-1}F_{1...N}^{k}$$

		Lemmas	
	0000		
	000	000	
		00000	
		00	
lomma 2			

$$F_{1...(i+1)i...N}^{k}R_{i(i+1)}^{k} = R_{(i+1)i}^{k-1}F_{1...N}^{k}$$

Proof. Obvious!

	Lemmas	
lemma 4		

$$F_{1...(i+1)i...N}R_{i(i+1)} = \begin{cases} I_{(i+1)i}F_{1...N}, & n \text{ even} \\ \\ I_{i(i+1)}F_{1...N}, & n \text{ odd} \\ \\ = F_{1...N} \end{cases}$$

		Lemmas	
	0000		
	000	000	
		00	
lemma 4			

		Lemmas	
	000	000	
		00	
Jemma 4			

		Lemmas	
	0000		
		000	
		00	
lana and d			

• $R_{12}^n = R_{12}$ and $R_{12}^1 = I_{12}$

		Lemmas	
	0000	0000	
		00000	
		0	
1			

- $R_{12}^n = R_{12}$ and $R_{12}^1 = I_{12}$
- then ...

	Lemmas	
0000 000		
	õo	

- $R_{12}^n = R_{12}$ and $R_{12}^1 = I_{12}$
- then ... obvious!

		Proof of theorem	
	0000 000	•	
proof of theorem			

$$F_{\sigma(1)\dots\sigma(N)}R^{\sigma} = F_{1\dots N}$$

		Proof of theorem	
	0 000 00000 0 00	•	

proof of theorem

		Proof of theorem	
	0 000 00000 0 00	•	

proof of theorem

Proof. Obvious!

		Discussion
0000		
000	000	
	00	

Discussion

Questions and comments.