Reduction formula of higher-spin XXZ form factors and the integrable XXZ model with spin- s quantum impurity ${ }^{1}$

Tetsuo Deguchi
Department of Physics, Ochanomizu University, Tokyo, Japan.

Main topics

- Reduction formula for the form factor of a local spin-s operator
- Multiple-integral representation of spin- s XXZ correlation functions
- Form factors for the spin- s quantum impurity in the XXZ spin chain

Many parts are in collaboration with Jun Sato and Kohei Motegi.
Recently, partially in collaboration with Ryoko Yahagi (quantum impurity) and Takako Watanabe (spin-1 form factors). We are also thankful to previous collaboration with Chihiro Matsui.

[^0]Main Reference of this talk
[D] T. D., arXiv:1105.4722. (reduction formula of spin- s form factors)
[DMo] T. D. and Kohei Motegi, in preparation.
[DS] T. D. and Jun Sato, Quantum group $U_{q}(s l(2))$ symmetry and explicit evaluation of the one-point functions of the integrable spin-1 XXZ spin chain, SIGMA 7 (2011), 056 (41 pages)
[DM2] T. D. and Chihiro Matsui, Correlation functions of the integrable higher-spin XXX and XXZ spin chains through the fusion method,
Nucl. Phys. B 831[FS] (2010) 359-407
[DM1] T. D. and Chihiro Matsui, Nucl. Phys. B 814 [FS] (2009) 405-438,
[DM4] T. D. and Chihiro Matsui, Nucl. Phys., B 851 (2011) pp. 238-243. (Erratum to [DM1])

Contents

- Part I: Reduction of spin- s form factors through fusion method
(1) Formula for expressing the spin- s operators with spin-1/2 ones (revised verion to [DM1])
(2): "Quantum Inverse Scattering Problem" for spin- s case

We do not solve it for operators but for matrix elements (i.e., form factors).

- Part II: Physical application 1
(1): Multiple-integral representation of arbitrary correlation functions for the integrable spin- s XXZ spin chain (revised version of [DM2])
(2): Numerical confirmation
- Part III: Physical application 2

Form factors of the spin- s quantum impurity in the XXZ chain

- Motivations: Super-integrable chiral Potts chain, Quantum Dynamics

1 Integrable spin- s XXZ Hamiltonians

Spin-1/2 case:

The Hamiltonian of the XXZ spin chain under the periodic boundary conditions (P.B.C.) is given by

$$
\begin{equation*}
\mathcal{H}_{\mathrm{XxZ}}=\sum_{j=1}^{L}\left(\sigma_{j}^{X} \sigma_{j+1}^{X}+\sigma_{j}^{Y} \sigma_{j+1}^{Y}+\Delta \sigma_{j}^{Z} \sigma_{j+1}^{Z}\right) \tag{1}
\end{equation*}
$$

Here $\sigma_{j}^{a}(a=X, Y, Z)$ are the Pauli matrices defined on the j th site and Δ denotes the anisotropy of the exchange coupling. The P.B.C. are given by $\sigma_{L+1}^{a}=\sigma_{1}^{a}$ for $a=X, Y, Z$.
Here we define

$$
\Delta=\left(q+q^{-1}\right) / 2, \quad(q=\exp \eta)
$$

$|\Delta|>1$: massive regime
$|\Delta|<1$: massless regime (CFT with $c=1$).

The integrable spin-1 XXZ Hamiltonian

The spin-1 XXZ Hamiltonian under the P.B.C. is given by the following:

$$
\begin{align*}
& \mathcal{H}_{\text {spin }-1 \mathrm{XXZ}} \\
= & J \sum_{j=1}^{N_{s}}\left\{\vec{S}_{j} \cdot \vec{S}_{j+1}-\left(\vec{S}_{j} \cdot \vec{S}_{j+1}\right)^{2}-\frac{1}{2}\left(q-q^{-1}\right)^{2}\left[S_{j}^{z} S_{j+1}^{z}-\left(S_{j}^{z} S_{j+1}^{z}\right)^{2}+2\left(S_{j}^{z}\right)^{2}\right]\right. \\
& -\left(q+q^{-1}-2\right)\left[\left(S_{j}^{x} S_{j+1}^{x}+S_{j}^{y} S_{j+1}^{y}\right) S_{j}^{z} S_{j+1}^{z}+S_{j}^{z} S_{j+1}^{z}\left(S_{j}^{x} S_{j+1}^{x}+S_{j}^{y} S_{j+1}^{y}\right)\right\} . \tag{2}
\end{align*}
$$

In the massless regime we assume $q=\exp i \zeta$ with $0 \leq \zeta<\pi / 2 s$. $(\eta=i \zeta)$ In the massive regime $q=\exp \zeta$ with $\zeta>0$.

In the massless regime, the ground state of the integrable spin- s XXZ spin chain corresponds to the criticality described by the $\mathrm{SU}(2)$ WZW model with level $2 s$.

We set $L=2 s N_{s}$. We often denote $2 s$ by ℓ. (ℓ are integers.)

Spin-s XXZ Hamiltonian expressed with the q-Clebsch-Gordan coefficiants

$$
\mathcal{H}_{\mathrm{XXZ}}^{(2 s)}=\left.\frac{d}{d \lambda} \log t_{12 \cdots N_{s}}^{(2 s, 2 s)}(\lambda)\right|_{\lambda=0, \xi_{j}=0}=\left.\sum_{i=1}^{N_{s}} \frac{d}{d u} \check{R}_{i, i+1}^{(2 s, 2 s)}(u)\right|_{u=0}
$$

where $t_{12 \cdots N_{s}}^{(2 s, 2 s}(\lambda)$ denotes the transfer matrix of the integrable spin- s XXZ chain. Here, the elements of the R-matrix for $V\left(l_{1}\right) \otimes V\left(l_{2}\right)$ are given by (cf. [T.D. and K. Motegi])

$$
\begin{gathered}
\check{R}\left|l_{1}, a_{1}\right\rangle \otimes\left|l_{2}, a_{2}\right\rangle=\sum_{b_{1}, b_{2}} \check{R}_{a_{1}, a_{2}}^{b_{1}, b_{2}}\left|l_{1}, b_{1}\right\rangle \otimes\left|l_{2}, b_{2}\right\rangle, \\
\check{R}_{a_{1}, a_{2}}^{b_{1}, b_{2}}= \\
\delta_{a_{1}+a_{2}, b_{1}+b_{2}} N\left(l_{1}, a_{1}\right) N\left(l_{2}, a_{2}\right) \sum_{j=0}^{\min \left(l_{1}, l_{2}\right)} N\left(l_{1}+l_{2}-2 j, a_{1}+a_{2}\right)^{-1} \\
\times \rho_{l_{1}+l_{2}-2 j}\left[\begin{array}{ccc}
l_{2} & l_{1} & l_{1}+l_{2}-2 j \\
b_{1} & b_{2} & a_{1}+a_{2}
\end{array}\right]\left[\begin{array}{ccc}
l_{1} & l_{2} & l_{1}+l_{2}-2 j \\
a_{1} & a_{2} & a_{1}+a_{2}
\end{array}\right]
\end{gathered}
$$

2 Algebraic Bethe ansatz

We define the R-matrix and the monodromy matrix $T_{0,12 \cdots L}\left(\lambda ;\left\{w_{j}\right\}\right)$ by

$$
\begin{aligned}
R_{12}\left(\lambda_{1}, \lambda_{2}\right) & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & b(u) & c(u) & 0 \\
0 & c(u) & b(u) & 0 \\
0 & 0 & 0 & 1
\end{array}\right)_{[1,2]} \\
T_{0,12 \cdots L}\left(\lambda ;\left\{w_{j}\right\}\right) & =R_{0 L}\left(\lambda, w_{L}\right) R_{0 L-1}\left(\lambda, w_{L-1}\right) \cdots R_{02}\left(\lambda, w_{2}\right) R_{01}\left(\lambda, w_{1}\right) .
\end{aligned}
$$

Here $u=\lambda_{1}-\lambda_{2}, b(u)=\sinh u / \sinh (u+\eta)$ and $c(u)=\sinh \eta / \sinh (u+\eta)$ with $q=\exp \eta$. The operator-valued matrix elements of give the "creation and annihilation operators"

$$
T_{0,12 \cdots L}\left(u ;\left\{w_{j}\right\}\right)=\left(\begin{array}{cc}
A(u) & B(u) \\
C(u) & D(u)
\end{array}\right)_{[0]}
$$

The transfer matrix, $t(u)$, is given by the trace of the monodromy matrix with respect to the 0th space:

$$
\begin{align*}
t\left(u ; w_{1}, \ldots, w_{L}\right) & =\operatorname{tr}_{0}\left(T_{0,12 \cdots L}\left(u ;\left\{w_{j}\right\}\right)\right) \\
& =A\left(u ;\left\{w_{j}\right\}\right)+D\left(u ;\left\{w_{j}\right\}\right) \tag{3}
\end{align*}
$$

3 Fusion method

First trick:

Applying the R-matrix R^{+}in homogeneous grading to the fusion construction

Through a similarity transformation we transform R to R^{+}

$$
\begin{gather*}
R_{12}^{+}(u)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & b(u) & c^{-}(u) & 0 \\
0 & c^{+}(u) & b(u) & 0 \\
0 & 0 & 0 & 1
\end{array}\right)_{[1,2]} . \tag{4}\\
c^{ \pm}(u)=e^{ \pm u} \sinh \eta / \sinh (u+\eta) \quad b(u)=\sinh u / \sinh (u+\eta)
\end{gather*}
$$

The R^{+}gives the intertwiner of the affine quantum group $U_{q}\left(\widehat{s l_{2}}\right)$ in the homogeneous grading of evaluation representations:

$$
R_{12}^{+}(u)(\Delta(a))_{12}=(\tau \circ \Delta(a))_{12} R_{12}^{+}(u) \quad a \in U_{q}\left(s l_{2}\right)
$$

where τ denotes the permutation operator: $\tau(a \otimes b)=b \otimes a$ for $a, b \in U_{q}\left(s l_{2}\right)$, and $(\Delta(a))_{12}=\pi_{1} \otimes \pi_{2}(\Delta(a))$.

Gauge transformation

We define the gauge transformation $\chi_{12 \cdots L}$ by

$$
\begin{equation*}
\chi_{12 \cdots L}=\Phi_{1}\left(w_{1}\right) \Phi_{2}\left(w_{2}\right) \cdots \Phi_{L}\left(w_{L}\right) . \tag{5}
\end{equation*}
$$

Here

$$
\Phi(w)=\operatorname{diag}(1, \exp (w))
$$

and w_{j} denote the inhomogeneity parameters of the spin- $1 / 2$ transfer matrix of the XXZ spin chain for $j=1,2, \ldots, L$.

Projection operators and the fusion constrution

We define permutation operator Π_{12} by

$$
\begin{equation*}
\Pi_{12} v_{1} \otimes v_{2}=v_{2} \otimes v_{1} \tag{6}
\end{equation*}
$$

and then define \check{R} by

$$
\begin{equation*}
\check{R}_{12}^{+}(u)=\Pi_{12} R_{12}^{+} \tag{7}
\end{equation*}
$$

We define spin- 1 projection operator by

$$
\begin{equation*}
P_{12}^{(2)}=\check{R}_{12}^{+}(u=\eta) \tag{8}
\end{equation*}
$$

We define spin $-\ell / 2$ projection operator recursively as follows.

$$
\begin{equation*}
P_{12 \cdots \ell}^{(\ell)}=P_{12 \cdots \ell-1}^{(\ell-1)} \check{R}_{\ell-1, \ell}^{+}((\ell-1) \eta) P_{12 \cdots \ell-1}^{(\ell-1)}, \tag{9}
\end{equation*}
$$

We define monodromy matrix $T_{0}^{(1,2 s)}\left(\lambda_{0} ; \xi_{1}, \ldots, \xi_{N_{s}}\right)$ acting on the tensor product $V^{(1)}\left(\lambda_{0}\right) \otimes\left(V^{(2 s)}\left(\xi_{1}\right) \otimes \cdots \otimes V^{(2 s)}\left(\xi_{N_{s}}\right)\right)$ as follows.

$$
\begin{equation*}
T_{0}^{(1,2 s)}\left(\lambda_{0} ; \xi_{1}, \ldots, \xi_{N_{s}}\right)=P_{12 \ldots L}^{(2 s)} \cdot R_{0,12 \cdots L}^{+}\left(\lambda_{0} ; w_{1}^{(2 s)}, \ldots, w_{L}^{(2 s)}\right) \cdot P_{12 \ldots L}^{(2 s)} . \tag{10}
\end{equation*}
$$

Here inhomogenous parameters w_{j} are given by complete $2 s$-strings

$$
w_{2 s(p-1)+k}^{(2 s)}=\xi_{p}-(k-1) \eta \quad\left(p=1,2, \ldots, N_{s} ; k=1, \ldots, 2 s .\right)
$$

More precisely, we shall put them as almost complete $2 s$-strings

$$
w_{2 s(p-1)+k}^{(2 s ; \epsilon)}=\xi_{p}-(k-1) \eta+\epsilon r_{k} \quad\left(p=1,2, \ldots, N_{s} ; k=1, \ldots, 2 s .\right)
$$

We express the matrix elements of the monodromy matrix as follows.

$$
\begin{gather*}
T_{0,12 \cdots N_{s}}^{(1,2 s)}\left(\lambda ;\left\{\xi_{k}\right\}_{N_{s}}\right)=\left(\begin{array}{cc}
A^{(2 s)}\left(\lambda ;\left\{\xi_{k}\right\}_{N_{s}}\right) & B^{(2 s)}\left(\lambda ;\left\{\xi_{k}\right\}_{N_{s}}\right) \\
C^{(2 s)}\left(\lambda ;\left\{\xi_{k}\right\}_{N_{s}}\right) & D^{(2 s)}\left(\lambda ;\left\{\xi_{k}\right\}_{N_{s}}\right)
\end{array}\right) . \tag{11}\\
A^{(2 s)}\left(\lambda ;\left\{\xi_{k}\right\}_{N_{s}}\right)=P_{12 \cdots L}^{(2 s)} \cdot A^{(1)}\left(\lambda ;\left\{w_{j}^{(2 s)}\right\}_{L}\right) \cdot P_{12 \cdots L}^{(2 s)}
\end{gather*}
$$

Figure 1: Matrix element of the monodromy matrix $\left(T_{\alpha, \beta}^{(\ell, 2 s)}\right)_{b_{1}, \ldots, b_{N_{s}}}^{a_{1}, \ldots, a_{N_{s}}}$.
Here quantum spaces $V_{j}^{(2 s)}\left(\xi_{j}\right)$ are $(2 s+1)$-dimensional (vertical lines),
Variables a_{j} and b_{j} take values $0,1, \ldots, 2 s$
while the auxiliary space $V_{0}^{(\ell)}\left(\lambda_{0}\right)$ is $(\ell+1)$-dimensional (horizontal line) . variables c_{j} take values $0,1, \ldots, \ell$.

$$
L=2 s N_{s}
$$

Spin-1/2 chain of L-sites with inhomogeneous parameters w_{1}, \ldots, w_{L},
while the spin-s chain of N_{s} sites with $\xi_{1}, \ldots, \xi_{N_{s}}$.
We now define $T_{0}^{(\ell, 2 s)}\left(\lambda_{0} ; \xi_{1}, \ldots, \xi_{N_{s}}\right)$ acting on
the tensor product $V_{0}^{(\ell)}\left(\lambda_{0}\right) \otimes\left(V^{(2 s)}\left(\xi_{1}\right) \otimes \cdots \otimes V^{(2 s)}\left(\xi_{N_{s}}\right)\right)$ as follows.

$$
\begin{gathered}
T_{0,12 \cdots N_{s}}^{(\ell, 2 s)}=P_{a_{1} a_{2} \cdots a_{\ell}}^{(\ell)} T_{a_{1}, 12 \cdots N_{s}}^{(1,2 s)}\left(\lambda_{a_{1}}\right) T_{a_{2}, 12 \cdots N_{s}}^{(1,2 s)}\left(\lambda_{a_{1}}-\eta\right) \cdots \\
T_{a_{\ell}, 12 \cdots N_{s}}^{(1,2 s)}\left(\lambda_{a_{1}}-(\ell-1) \eta\right) P_{a_{1} a_{2} \cdots a_{\ell}}^{(\ell)} .
\end{gathered}
$$

4 Qunatum groups

The quantum algebra $U_{q}\left(s l_{2}\right)$ is an associative algebra over \mathbf{C} generated by $X^{ \pm}, K^{ \pm}$with the following relations:

$$
\begin{align*}
K K^{-1} & =K K^{-1}=1, \quad K X^{ \pm} K^{-1}=q^{ \pm 2} X^{ \pm} \\
{\left[X^{+}, X^{-}\right] } & =\frac{K-K^{-1}}{q-q^{-1}} \tag{12}
\end{align*}
$$

The algebra $U_{q}\left(s l_{2}\right)$ is also a Hopf algebra over \mathbf{C} with comultiplication

$$
\begin{align*}
\Delta\left(X^{+}\right) & =X^{+} \otimes 1+K \otimes X^{+}, \quad \Delta\left(X^{-}\right)=X^{-} \otimes K^{-1}+1 \otimes X^{-} \\
\Delta(K) & =K \otimes K \tag{13}
\end{align*}
$$

and antipode: $S(K)=K^{-1}, S\left(X^{+}\right)=-K^{-1} X^{+}, S\left(X^{-}\right)=-X^{-} K$, and coproduct: $\epsilon\left(X^{ \pm}\right)=0$ and $\epsilon(K)=1$.
$[n]_{q}=\left(q^{n}-q^{-n}\right) /\left(q-q^{-1}\right)$: the q-integer of an integer n.
$[n]_{q}!$ the q-factorial for an integer n.

$$
\begin{equation*}
[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[1]_{q} . \tag{14}
\end{equation*}
$$

For integers $m \geq n \geq 0$, the q-binomial coefficient is defined by

$$
\left[\begin{array}{c}
m \tag{15}\\
n
\end{array}\right]_{q}=\frac{[m]_{q}!}{[m-n]_{q}![n]_{q}!} .
$$

We define $\| \ell, 0\rangle$ for $n=0,1, \ldots, \ell$ by

$$
\begin{equation*}
||\ell, 0\rangle=| 0\rangle_{1} \otimes|0\rangle_{2} \otimes \cdots \otimes|0\rangle_{\ell} . \tag{16}
\end{equation*}
$$

Here $|\alpha\rangle_{j}$ for $\alpha=0,1$ denote the basis vectors of the spin- $1 / 2$ rep. We define $\left.\| \ell, n\right\rangle$ for $n \geq 1$ and evaluate them as follows .

$$
\begin{align*}
\| \ell, n\rangle & \left.=\left(\Delta^{(\ell-1)}\left(X^{-}\right)\right)^{n} \| \ell, 0\right\rangle \frac{1}{[n]_{q}!} \\
& =\sum_{1 \leq i_{1}<\cdots<i_{n} \leq \ell} \sigma_{i_{1}}^{-} \cdots \sigma_{i_{n}}^{-}|0\rangle q^{i_{1}+i_{2}+\cdots+i_{n}-n \ell+n(n-1) / 2} . \tag{17}
\end{align*}
$$

We have conjugate vectors $\langle\ell, n \|$ explicitly as folllows.

$$
\left\langle\ell, n \|=\left[\begin{array}{l}
\ell \tag{18}\\
n
\end{array}\right]_{q}^{-1} q^{n(\ell-n)} \sum_{1 \leq i_{1}<\cdots<i_{n} \leq \ell}\langle 0| \sigma_{i_{1}}^{+} \cdots \sigma_{i_{n}}^{+} q^{i_{1}+\cdots+i_{n}-n \ell+n(n-1) / 2}\right.
$$

Here the normalization conditions: $\langle\ell, n\| \| \ell, n\rangle=1$.
We can show

$$
\begin{equation*}
\left.P^{(\ell)}=\sum_{n=0}^{\ell} \| \ell, n\right\rangle\langle\ell, n \| . \tag{19}
\end{equation*}
$$

Spin- $\ell / 2$ elementary operators

We shall define spin-s elementary operators by

$$
\left.E^{i, j(\ell)}=\| \ell, i\right\rangle\langle\ell, j \|
$$

5 Reduction formula for the spin- s XXZ form factors
$\| \ell, 0\rangle=|0\rangle_{1} \otimes \cdots \otimes|0\rangle_{\ell}$ we have the following:

$$
\begin{align*}
\| \ell, 0\rangle\langle\ell, 0 \| & =|0\rangle_{1} \otimes \cdots \otimes|0\rangle_{\ell}\left\langle0 | _ { 1 } \otimes \cdots \otimes \left\langle\left. 0\right|_{\ell}\right.\right. \\
& =|0\rangle_{1}\left\langle\left. 0\right|_{1} \otimes \cdots \otimes \mid 0\right\rangle_{\ell}\left\langle\left. 0\right|_{\ell}\right. \\
& =e_{1}^{0,0} \cdots e_{\ell}^{0,0} \tag{20}
\end{align*}
$$

We have

$$
|0\rangle_{1}\left\langle\left. 0\right|_{1}=(1,0)^{T}(1,0)=\left(\begin{array}{ll}
1 & 0 \tag{21}\\
0 & 0
\end{array}\right)=e^{0,0}\right.
$$

We consider spin-1/2 elementary operators $e^{\varepsilon^{\prime}, \varepsilon}$ for $\varepsilon^{\prime}, \varepsilon=0,1$, as follows.

$$
e^{0,1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad e^{1,0}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad e^{1,1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

For a given sequence, $a_{1}, a_{2}, \ldots, a_{N}$, we denote it by $\left(a_{j}\right)_{N}$, briefly; i.e., we have

$$
\begin{equation*}
\left(a_{j}\right)_{N}=\left(a_{1}, a_{2}, \ldots, a_{N}\right) \tag{22}
\end{equation*}
$$

For $\left(\varepsilon_{\alpha}^{\prime}\right)_{\ell}$ and $\left(\varepsilon_{\beta}\right)_{\ell}$ consisting of only two values 0 or 1 , we consider the following product:

$$
\begin{equation*}
\prod_{k=1}^{\ell} e_{k}^{\varepsilon_{k}^{\prime}, \varepsilon_{k}}=e_{1}^{\varepsilon_{1}^{\prime}, \varepsilon_{1}} \cdots e_{\ell}^{\varepsilon_{\ell}^{\prime}, \varepsilon_{\ell}} \tag{23}
\end{equation*}
$$

We define a set $\boldsymbol{\alpha}^{-}$by the set of integers k satisfying $\varepsilon_{k}^{\prime}=1$ for $1 \leq k \leq \ell$ and a set $\boldsymbol{\alpha}^{+}$by the set of integers k satisfying $\varepsilon_{k}=0$ for $1 \leq k \leq \ell$, respectively:

$$
\begin{equation*}
\boldsymbol{\alpha}^{-}\left(\left\{\varepsilon_{\alpha}^{\prime}\right\}\right)=\left\{\alpha ; \varepsilon_{\alpha}^{\prime}=1(1 \leq \alpha \leq \ell)\right\}, \quad \boldsymbol{\alpha}^{+}\left(\left\{\varepsilon_{\beta}\right\}\right)=\left\{\beta ; \varepsilon_{\beta}=0(1 \leq \beta \leq \ell)\right\} \tag{24}
\end{equation*}
$$

Let us denote by Σ_{ℓ} the set of integers $1,2, \ldots, \ell$;

$$
\Sigma_{\ell}=\{1,2, \ldots, \ell\}
$$

In terms of sets $\boldsymbol{\alpha}^{ \pm}$we express the product of elementary operators given by (23) as

$$
\begin{equation*}
\left.\prod_{k=1}^{\ell} e_{k}^{\varepsilon_{k}^{\prime}, \varepsilon_{k}}=\prod_{a \in \boldsymbol{\alpha}^{-}} \sigma_{a}^{-} \| \ell, 0\right\rangle\left\langle\ell, 0 \| \prod_{b \in \Sigma_{\ell} \backslash \boldsymbol{\alpha}^{+}} \sigma_{b}^{+}\right. \tag{25}
\end{equation*}
$$

We express the elements of $\boldsymbol{\alpha}^{-}$as $a(k)$ for $k=1,2, \ldots, i$, and those of $\Sigma_{\ell} \backslash \boldsymbol{\alpha}^{+}$as $b(k)$ for $k=1,2, \ldots, j$, respectively.

$$
\begin{equation*}
\boldsymbol{\alpha}^{-}=\{a(1), a(2), \ldots, a(i)\}, \quad \Sigma_{\ell} \backslash \boldsymbol{\alpha}^{+}=\{b(1), b(2), \ldots, b(j)\} \tag{26}
\end{equation*}
$$

Suppose that we have a sequence $\left(\varepsilon_{\alpha}^{\prime}\right)_{\ell}$ such that $\varepsilon_{\alpha}^{\prime}=0$ or 1 for all integers α with $1 \leq \alpha \leq \ell$ and the number of integers α satisfying $\varepsilon_{\alpha}^{\prime}=1(1 \leq \alpha \leq \ell)$ is given by i. Then, we denote $\varepsilon_{\alpha}^{\prime}$ by $\varepsilon_{\alpha}^{\prime}(i)$ for each integer α and the sequence $\left(\varepsilon_{\alpha}^{\prime}\right)_{\ell}$ by $\left(\varepsilon_{\alpha}^{\prime}(i)\right)_{\ell}$.

Sequences $\left(\varepsilon_{\alpha}^{\prime}(i)\right)_{\ell}$ and $\left(\varepsilon_{\beta}(j)\right)_{\ell}$ are related to integers $a(1)<a(2)<\cdots<a(i)$ and $b(1)<b(2)<\cdots<b(j)$, respectively, by

$$
\begin{align*}
e_{1}^{\varepsilon_{1}^{\prime}(i), \varepsilon_{1}(j)} \cdots e_{\ell}^{\varepsilon_{\ell}^{\prime}(i), \varepsilon_{\ell}(j)} & =e_{a(1)}^{1,0} \cdots e_{a(i)}^{1,0} e_{1}^{0,0} \cdots e_{\ell}^{0,0} e_{b(1)}^{0,1} \cdots e_{b(j)}^{0,1}, \tag{27}\\
\prod_{k=1}^{\ell} e_{k}^{\varepsilon_{k}^{\prime}(i), \varepsilon_{k}(j)} & \left.=\prod_{a \in \boldsymbol{\alpha}^{-}} \sigma_{a}^{-} \| \ell, 0\right\rangle\left\langle\ell, 0 \| \prod_{b \in \Sigma_{\ell} \backslash \boldsymbol{\alpha}^{+}} \sigma_{b}^{+} .\right. \tag{28}
\end{align*}
$$

We define spin- $\ell / 2$ elementary operators associated with grading w by

$$
\left.E^{i, j(\ell w)}=\| \ell, i\right\rangle\langle\ell, j \|
$$

We have

$$
\begin{equation*}
\| \ell, i\rangle\left\langle\ell, j \|=\sum_{\left(\varepsilon_{\alpha}^{\prime}(i)\right)_{\ell}} \sum_{\left(\varepsilon_{\beta}(j)\right)_{\ell}} g_{i j}\left(\varepsilon_{\alpha}^{\prime}(i), \varepsilon_{\beta}(j)\right) e_{1}^{\varepsilon_{1}^{\prime}(i), \varepsilon_{1}(j)} \cdots e_{\ell}^{\varepsilon_{\ell}^{\prime}(i), \varepsilon_{\ell}(j)}\right. \tag{29}
\end{equation*}
$$

Here the sum is taken over all two sequences $\left(\varepsilon_{\alpha}^{\prime}(i)\right)_{\ell}$ and $\left(\varepsilon_{\beta}(j)\right)_{\ell}$.
Lemma 1. Let $\boldsymbol{\alpha}^{-}$be a set of distinct integers $\{a(1), \ldots, a(i)\}$ satisfying $1 \leq a(1)<$ $\ldots<a(i) \leq \ell$, we have the following:

$$
\left\langle\ell, i\left\|\sigma_{a(1)}^{-} \cdots \sigma_{a(i)}^{-}\right\| \ell, 0\right\rangle q^{-(a(1)+\cdots+a(i))+i}=\left[\begin{array}{c}
\ell \tag{30}\\
i
\end{array}\right]_{q}^{-1} q^{-i(i-1) / 2}
$$

which is independent of the set $\boldsymbol{\alpha}^{-}=\{a(1), a(2), \ldots, a(i)\}$.

Proposition 1. For every pair of integers i and j with $1 \leq i, j \leq \ell$ the spin- $\ell / 2$ elementary operator associated with grading $w, E_{1}^{i, j(\ell w)}$, is decomposed into a sum of products of the spin-1/2 elementary operators as follows.

$$
\begin{align*}
E_{1}^{i, j(\ell w)}= & {\left[\begin{array}{l}
\ell \\
i
\end{array}\right]_{q}\left[\begin{array}{l}
\ell \\
j
\end{array}\right]_{q}^{-1} q^{i(i-1) / 2-j(j-1) / 2} e^{-(i-j) \xi_{1}} } \\
& \times P_{12 \ldots \ell}^{(\ell)} \sum_{\left(\varepsilon_{\beta}(j)\right)_{\ell}} \chi_{12 \cdots \ell} e_{1}^{\varepsilon_{1}^{\prime}(i), \varepsilon_{1}(j)} \cdots e_{\ell}^{\varepsilon_{\ell}^{\prime}(i), \varepsilon_{\ell}(j)} \chi_{12 \cdots \ell}^{-1} . \tag{31}
\end{align*}
$$

Here, we fix a sequence $\left(\varepsilon_{\alpha}^{\prime}(i)\right)_{\ell}$. Furthermore, the expression (31) does not depend on the order of $\varepsilon_{\alpha}^{\prime}(i) s$ with respect to αs.

Quantum inverse-scattering problem

Let us recall the formula of the quantum inverse-scattering problem (QISP) for the spin-1/2 XXZ spin chain (Kitanine et al, 1999)

$$
\begin{equation*}
x_{n}=\prod_{k=1}^{n-1}\left(A^{(1 w)}+D^{(1 w)}\right)\left(w_{k}\right) \cdot \operatorname{tr}_{0}\left(x_{0} T_{0,12 \cdots L}^{(1 w)}\left(w_{n}\right)\right) \cdot \prod_{k=1}^{n}\left(A^{(1 w)}+D^{(1 w)}\right)^{-1}\left(w_{k}\right) \tag{32}
\end{equation*}
$$

Here we assume that inhomogeneity parameters w_{j} are given by generic values so that the transfer matrices $\left(A^{(1 w)}+D^{(1 w)}\right)\left(w_{k}\right)$ are regular for $k=1,2, \ldots, n$.

Making use of the QISP formula (32) we have the following expressions for $b=1,2, \ldots, N_{s}$:

$$
\begin{align*}
& e_{\ell(b-1)+1}^{\varepsilon_{1}^{\prime}, \varepsilon_{1}} \cdots e_{\ell(b-1)+\ell}^{\varepsilon_{\ell}^{\prime}, \varepsilon_{\ell}}=\prod_{k=1}^{\ell(b-1)}\left(A^{(1 w)}\left(w_{k}\right)+D^{(1 w)}\left(w_{k}\right)\right) \\
& \quad \times T_{\varepsilon_{1}, \varepsilon_{1}^{\prime}}^{(1 w)}\left(w_{\ell(b-1)+1}\right) \cdots T_{\varepsilon_{\ell}, \varepsilon_{\ell}^{\prime}}^{(1 w)}\left(w_{\ell(b-1)+\ell)} \prod_{k=1}^{\ell b}\left(A^{(1 w)}\left(w_{k}\right)+D^{(1 w)}\left(w_{k}\right)\right)^{-1} .\right. \tag{33}
\end{align*}
$$

Here we have denoted by $T_{\alpha, \beta}(\lambda)$ the (α, β) element of the monodromy matrix $T(\lambda)$.
"Quantum inverse-scattering problem" for the spin- $\ell / 2$ operators

$$
\begin{aligned}
& \widehat{E}_{1}^{i j(\ell w)}=\widehat{N}_{i, j}^{(\ell)} e^{-(i-j) \Lambda_{1} \delta(w, p)} \cdot P_{1 \cdots \ell}^{(\ell)} \times \\
\times & \chi_{12 \cdots \ell} \sum_{\left(\varepsilon_{\beta}(j)\right)_{\ell}} T_{\varepsilon_{1}(j), \varepsilon_{1}^{\prime}(i)}^{(1 w)}\left(w_{1}\right) \cdots T_{\varepsilon_{\ell}(j), \varepsilon_{\ell}^{\prime}(i)}^{(1 w)}\left(w_{\ell}\right) \prod_{k=1}^{\ell}\left(A^{(1 w)}\left(w_{k}\right)+D^{(1 w)}\left(w_{k}\right)\right)^{-1} \chi_{12 \cdots \ell}^{-1} .
\end{aligned}
$$

Here, we fix a sequence $\left(\varepsilon_{\alpha}^{\prime}(i)\right)_{\ell}$.
Problem: Non-regularity of the transfer matrix
Putting $\lambda=w_{1}^{(2)}=\xi_{1}$ we have

$$
A_{12}^{(2+; 0)}\left(\xi_{1}\right)+D_{12}^{(2+; 0)}\left(\xi_{1}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{34}\\
0 & \frac{1}{[2]_{q}} \frac{q^{-1}}{[2]_{q}} & 0 \\
0 & \frac{q}{[2]_{q}} & \frac{1}{[2]_{q}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)_{[1,2]}
$$

We thus show that the transfer matrix is non-regular at $\lambda=w_{1}^{(2)}=\xi_{1}$:

$$
\begin{equation*}
\operatorname{det}\left(A_{12}^{(2+; 0)}\left(\xi_{1}\right)+D_{12}^{(2+; 0)}\left(\xi_{1}\right)\right)=0 \tag{35}
\end{equation*}
$$

A "solution" to the spin-s QISP through continuity assumption of solutions of the Bethe-ansatz equations

Let us now assume that the Bethe roots $\left\{\lambda_{\beta}(\epsilon)\right\}_{M}$ approach the Bethe roots $\left\{\lambda_{\beta}\right\}_{M}$ continuously in the limit of sending ϵ to 0 . It follows that each entry of the Bethe-ansatz eigenstate of the Bethe roots $\left\{\lambda_{\beta}(\epsilon)\right\}_{M}$ is continuous with respect to ϵ. For a set of arbitrary parameters $\left\{\mu_{k}\right\}_{N}$ we therefore have

$$
\begin{align*}
& \langle 0| \prod_{\alpha=1}^{N} C^{(\ell p ; 0)}\left(\mu_{a}\right) \cdot e_{1}^{\varepsilon_{1}^{\prime}, \varepsilon_{1}} \cdots e_{\ell}^{\varepsilon_{\ell}^{\prime}, \varepsilon_{\ell}} \cdot \prod_{\beta=1}^{M} B^{(\ell p ; 0)}\left(\lambda_{\beta}\right)|0\rangle \\
& =\lim _{\epsilon \rightarrow 0}\langle 0| \prod_{\alpha=1}^{N} C^{(\ell p ; \epsilon)}\left(\mu_{a}\right) \cdot e_{1}^{\varepsilon_{1}^{\prime}, \varepsilon_{1}} \cdots e_{\ell}^{\varepsilon_{\ell}^{\prime}, \varepsilon_{\ell}} \cdot \prod_{\beta=1}^{M} B^{(\ell p ; \epsilon)}\left(\lambda_{\beta}(\epsilon)\right)|0\rangle . \tag{36}
\end{align*}
$$

Solution to the spin- s QISP for the matrix elements (form factors)

We have the following expressions for $b=1,2, \ldots, N_{s}$:

$$
\begin{aligned}
& e_{\ell(b-1)+1}^{\varepsilon_{1}^{\prime}, \varepsilon_{1}} \cdots e_{\ell(b-1)+\ell}^{\varepsilon_{\ell}^{\prime}, \varepsilon_{\ell}}=\prod_{k=1}^{\ell(b-1)}\left(A^{(\ell w ; \epsilon)}\left(w_{k}^{(\ell ; \epsilon)}\right)+D^{(\ell w ; \epsilon)}\left(w_{k}^{(\ell ; \epsilon)}\right)\right) \\
& \quad \times T_{\varepsilon_{1}, \varepsilon_{1}^{\prime}}^{(\ell w ; \epsilon)}\left(w_{\ell(b-1)+1}^{(\ell ; \epsilon)}\right) \cdots T_{\varepsilon_{\ell}, \varepsilon_{\ell}^{\prime}}^{(\ell w ; \epsilon)}\left(w_{\ell(b-1)+\ell}^{(\ell ; \epsilon)}\right) \prod_{k=1}^{\ell b}\left(A^{(\ell w ; \epsilon)}\left(w_{k}^{(\ell ; \epsilon)}\right)+D^{(\ell w ; \epsilon)}\left(w_{k}^{(\ell ; \epsilon)}\right)\right)^{-1} .
\end{aligned}
$$

For instance in the case of $b=1$, we have

$$
\begin{align*}
& \langle 0| \prod_{\alpha=1}^{N} C^{(\ell p ; \epsilon)}\left(\mu_{a}\right) \cdot e_{1}^{\varepsilon_{1}^{\prime}, \varepsilon_{1}} \cdots e_{\ell}^{\varepsilon_{\ell}^{\prime}, \varepsilon_{\ell}} \cdot \prod_{\beta=1}^{M} B^{(\ell p ; \epsilon)}\left(\lambda_{\beta}(\epsilon)\right)|0\rangle \\
& =\phi_{\ell}\left(\left\{\lambda_{\beta}\right\} ;\left\{w_{j}^{(\ell)}\right\}\right)\langle 0| \prod_{\alpha=1}^{N} C^{(\ell p ; \epsilon)}\left(\mu_{a}\right) \cdot T_{\varepsilon_{1}, \varepsilon_{1}^{\prime}}^{(\ell p ; \epsilon)}\left(w_{1}^{(\ell ; \epsilon)}\right) \cdots T_{\varepsilon_{\ell,}, \varepsilon_{\ell}^{\prime}}^{(\ell p ; \epsilon)}\left(w_{\ell}^{(\ell ; \epsilon)}\right) \cdot \\
& \tag{37}\\
& \times \prod_{\beta=1}^{M} B^{(\ell p ; \epsilon)}\left(\lambda_{\beta}(\epsilon)\right)|0\rangle
\end{align*}
$$

Proposition 2. Let $\left\{\mu_{k}\right\}_{N}$ be a set of arbitrary parameters and $\left\{\lambda_{\alpha}\right\}_{M}$ a solution of the spin- $\ell / 2$ Bethe-ansatz equations. We denote by $\left\{\lambda_{\alpha}(\epsilon)\right\}_{M}$ a solution of the Betheansatz equations for the spin-1/2 XXZ chain whose inhomogeneity parameters w_{j} are given by the N_{s} pieces of the almost complete ℓ-strings: $w_{j}=w_{j}^{(\ell ; \epsilon)}$ for $1 \leq j \leq L$. We assume that the set $\left\{\lambda_{\alpha}(\epsilon)\right\}_{M}$ approaches $\left\{\lambda_{\alpha}\right\}_{M}$ continuously when we send ϵ to zero. For the Bethe states $\left\langle\left\{\mu_{k}\right\}_{N}\right|$ and $\left|\left\{\lambda_{\alpha}\right\}_{M}\right\rangle$, which are off-shell and onshell, respectively, we evaluate the matrix elements of a given product of elementary operators $e_{1}^{\varepsilon_{1}^{\prime}, \varepsilon_{1}} \cdots e_{\ell}^{\varepsilon_{\ell}^{\prime}, \varepsilon_{\ell}}$ as follows.

$$
\begin{align*}
& \langle 0| \prod_{\alpha=1}^{N} C^{(\ell p ; 0)}\left(\mu_{a}\right) e_{1}^{\varepsilon_{1}^{\prime}, \varepsilon_{1}} \cdots e_{\ell}^{\varepsilon_{\ell}^{\prime}, \varepsilon_{\ell}} \prod_{\beta=1}^{M} B^{(\ell p ; 0)}\left(\lambda_{\beta}\right)|0\rangle=\phi_{\ell}\left(\left\{\lambda_{\beta}\right\} ;\left\{w_{j}^{(\ell)}\right\}\right) \\
& \times \lim _{\epsilon \rightarrow 0}\langle 0| \prod_{\alpha=1}^{N} C^{(\ell p ; \epsilon)}\left(\mu_{a}\right) T_{\varepsilon_{1}, \varepsilon_{1}^{\prime}}^{(\ell p ; \epsilon)}\left(w_{1}^{(\ell ; \epsilon)}\right) \cdots T_{\varepsilon_{\ell}, \varepsilon_{\ell}^{\prime}}^{(\ell p ; \epsilon)}\left(w_{\ell}^{(\ell ; \epsilon)}\right) \prod_{\beta=1}^{M} B^{(\ell p ; \epsilon)}\left(\lambda_{\beta}(\epsilon)\right)|0\rangle \tag{38}
\end{align*}
$$

where $\phi_{m}\left(\left\{\lambda_{\beta}\right\}\right)$ has been defined by $\phi_{m}\left(\left\{\lambda_{\beta}\right\} ;\left\{w_{j}\right\}\right)=\prod_{j=1}^{m} \prod_{\alpha=1}^{M} b\left(\lambda_{\alpha}-w_{j}\right)$ with $b(u)=\sinh (u) / \sinh (u+\eta)$.

General spin- $\ell / 2$ elementary operators

In the spin- $\ell / 2$ representation constructed in the ℓ th tensor product space $\left(V^{(1)}\right)^{\otimes \ell}$, we define the general spin- s elementary operators associated with principal grading, $\widehat{E}^{i, j(\ell p)}$, by

$$
\begin{equation*}
\left.\widehat{E}^{i, j(\ell p)}=\| \ell, i\right\rangle\left\langle\ell, j \| \frac{g(j)}{g(i)}, \quad \text { for } i, j=0,1, \ldots, \ell .\right. \tag{39}
\end{equation*}
$$

Then, through the spin- $\ell / 2$ gauge transformation we define the general spin- s elementary operators associated with homogeneous grading by

$$
\begin{equation*}
\widehat{E}^{i, j(\ell+)}=\chi_{12 \ldots N_{s}}^{(\ell)} \widehat{E}^{i, j(\ell p)}\left(\chi_{12 \ldots N_{s}}^{(\ell)}\right)^{-1} . \tag{40}
\end{equation*}
$$

We explicitly have

$$
\begin{equation*}
\left.\widehat{E}^{i, j(\ell+)}=\| \ell, i\right\rangle\left\langle\ell, j \| \frac{g(j)}{g(i)} e^{(i-j)(\xi-(\ell-1) \eta / 2)}, \quad \text { for } i, j=0,1, \ldots, \ell .\right. \tag{41}
\end{equation*}
$$

Here we recall that the quantity $\xi-(\ell-1) \eta / 2$ corresponds to the string center of the ℓ-string: $\xi, \xi-\eta, \ldots, \xi-(\ell-1) \eta$.

We define the general spin- $\ell / 2$ elementary operators associated with principal grading acting in the tenor product space $V_{1}^{(\ell)} \otimes \cdots V_{N_{s}}^{(\ell)}$ by

$$
\begin{equation*}
\widehat{E}_{k}^{i, j(\ell p)}=\left(I^{(\ell)}\right)^{\otimes(k-1)} \otimes \widehat{E}^{i, j(\ell p)} \otimes\left(I^{(\ell)}\right)^{\otimes\left(N_{s}-k\right)}, \quad \text { for } i, j=0,1, \ldots, \ell . \tag{42}
\end{equation*}
$$

Similarly we define that of homogeneous grading, $\widehat{E}_{k}^{i, j(\ell,+)}$ for $i, j=0,1, \ldots, \ell$.
Let us introduce the normalization factor $\widehat{N}_{i, j}^{(\ell)}$ by $\widehat{N}_{i, j}^{(\ell)}=N_{i, j}^{(\ell)} g(i) / g(j)$. We have

$$
\begin{equation*}
\widehat{N}_{i, j}^{(\ell)}=\frac{g(j)}{g(i)} \frac{F(\ell, i)}{F(\ell, j)} q^{i(\ell-i) / 2-j(\ell-j) / 2} \tag{43}
\end{equation*}
$$

We define $\delta(w, p)$ for gradings \pm and p by

$$
\delta(w, p)= \begin{cases}1 & \text { if } w=p \tag{44}\\ 0 & \text { otherwise }\end{cases}
$$

With factor $\widehat{N}_{i, j}^{(\ell)}$ and the string center: $\Lambda_{1}=\xi_{1}-(\ell-1) \eta / 2$, from Proposition 1 , we have

$$
\begin{equation*}
\widehat{E}_{1}^{i, j(\ell w)}=\widehat{N}_{i, j}^{(\ell)} e^{-(i-j) \Lambda_{1} \delta(w, p)} P_{12 \ldots \ell}^{(\ell)} \sum_{\left(\varepsilon_{\beta}(j)\right)_{\ell}} \chi_{12 \ldots \ell} e_{1}^{\varepsilon_{1}^{\prime}(i), \varepsilon_{1}(j)} \cdots e_{\ell}^{\varepsilon_{\ell}^{\prime}(i), \varepsilon_{\ell}(j)} \chi_{12 \cdots \ell}^{-1} . \tag{45}
\end{equation*}
$$

Here, we recall that sequence $\left(\varepsilon_{\alpha}^{\prime}(i)\right)_{\ell}$ is fixed.

Proposition 3. Let us take integers i_{k} and j_{k} satisfying $1 \leq i_{k}, j_{k} \leq \ell$ for $k=$ $1,2, \ldots, m$. We set $\sum_{k} i_{k}-\sum_{k} j_{k}=N-M$. Let $\left\{\mu_{k}\right\}_{N}$ be a set of arbitrary N parameters. If the set of the Bethe roots $\left\{\lambda_{\beta}(\epsilon)\right\}_{M}$ approaches the set of the Bethe roots $\left\{\lambda_{\beta}\right\}_{M}$ continuously at $\epsilon=0$, we have the following:

$$
\begin{align*}
& \langle 0| \prod_{\alpha=1}^{N} C^{(\ell w)}\left(\mu_{a}\right) \cdot \prod_{k} \widehat{E}_{k}^{i_{k}, j_{k}(\ell w)} \cdot \prod_{\beta=1}^{M} B^{(\ell w)}\left(\lambda_{\beta}\right)|0\rangle \\
& =\left(\prod_{k=1}^{m} \widehat{N}_{i_{k}, j_{k}}^{(\ell)}\right) \cdot e^{\sigma(w)\left(\sum_{k=1}^{N} \mu_{k}-\sum_{\gamma=1}^{M} \lambda_{\gamma}\right)} \phi_{\ell}\left(\left\{\lambda_{\beta}\right\} ;\left\{w_{j}^{(\ell)}\right\}\right) \sum_{\left(\varepsilon_{\beta}^{[1]}\left(j_{1}\right)\right) \ell} \cdots \sum_{\left(\varepsilon_{\beta}^{[m]}\left(j_{m}\right)\right) \ell} \\
& \times \lim _{\epsilon \rightarrow 0}\langle 0| \prod_{\alpha=1}^{N} C^{(\ell p ; \epsilon)}\left(\mu_{a}\right) \prod_{k=1}^{m}\left(T_{\varepsilon_{1}^{(k]}\left(j_{k}\right), \varepsilon_{1}^{\left[l_{1}^{\prime}\left(i_{k}\right)\right.}}^{(\ell p \epsilon)}\left(w_{1}^{(\ell ; \epsilon)}\right) \cdots T_{\left.\varepsilon_{\ell}^{[k]}\right]\left(j_{k}\right), \varepsilon_{\ell}^{\left.(k]^{\prime}\right]}\left(j_{k}\right)}^{(\ell p ;)}\left(w_{\ell}^{(\ell ; \epsilon)}\right)\right) \\
& \quad \times \prod_{\beta=1}^{M} B^{(\ell p ; \epsilon)}\left(\lambda_{\beta}(\epsilon)\right)|0\rangle . \tag{46}
\end{align*}
$$

Here we have chosen sequences $\varepsilon_{\alpha}^{[k]^{\prime}}\left(j_{k}\right)$ for each integer k of $1 \leq k \leq m$.

Here we consider a product of the general spin- $\ell / 2$ elementary operators,

$$
\hat{E}_{1}^{i_{1}, j_{1}(\ell w)} \cdots \hat{E}_{m}^{i_{m}, j_{m}(\ell w)}
$$

We also recall variables $\varepsilon_{\alpha}^{[k]}\left(i_{k}\right)$ and $\varepsilon_{\beta}^{[k]}\left(j_{k}\right)$ which take only two values 0 or 1 for $k=$ $1,2, \ldots, m$ and $\alpha, \beta=0,1, \ldots, \ell$. We have the following:
For the m th product of elementary operators, we introduce the sets of variables $\varepsilon_{\alpha}^{[k]]^{\prime}} \mathrm{S}$ and $\varepsilon_{\beta}^{[k]} \mathrm{S}(1 \leq k \leq m)$ such that the number of $\varepsilon_{\alpha}^{[k]^{\prime}}=1$ with $1 \leq a \leq 2 s$ is given by i_{k} and the number of $\varepsilon_{\beta}^{[k]}=1$ with $1 \leq b \leq 2 s$ by j_{k}, respectively. Here, the variables $\varepsilon_{\alpha}^{[k]^{\prime}}$ and $\varepsilon_{\beta}^{[k]}$ take only two values 0 or 1 . We then express them by integers $\varepsilon_{j}^{\prime} \mathrm{s}$ and $\varepsilon_{j} \mathrm{~s}$ for $j=1,2, \ldots, 2 s m$ as follows:

$$
\begin{align*}
& \varepsilon_{2 s(k-1)+\alpha}^{\prime}=\varepsilon_{\alpha}^{[k]^{\prime}} \text { for } \quad \alpha=1,2, \ldots, 2 s ; k=1,2, \ldots, m \\
& \varepsilon_{2 s(k-1)+\beta}=\varepsilon_{\beta}^{[k]} \quad \text { for } \quad \beta=1,2, \ldots, 2 s ; k=1,2, \ldots, m \tag{47}
\end{align*}
$$

6 Multiple-integral representation for the spin- s XXZ CFs

The fundamental conjecture of the spin- s ground state

The spin-s ground state $\left|\psi_{g}^{(2 s)}\right\rangle$ is given by $N_{s} / 2$ sets of $2 s$-strings for $0 \leq \zeta<\pi / 2 s$.

$$
\lambda_{a}^{(\alpha)}=\mu_{a}-(\alpha-1 / 2) \eta+\epsilon_{a}^{(\alpha)}, \quad \text { for } a=1,2, \ldots, N_{s} / 2 \text { and } \alpha=1,2, \ldots, 2 s
$$

Deviaions are given by $\epsilon_{a}^{(\alpha)}=\sqrt{-1} \delta_{a}^{(\alpha)}$ where $\delta_{a}^{(\alpha)}$ are real and decreasing w.r.t. α, and $\left|\delta_{a}^{(\alpha)}\right|>\left|\delta_{a}^{(\alpha+1)}\right|$ for $\alpha<s,\left|\delta_{a}^{(\alpha)}\right|<\left|\delta_{a}^{(\alpha+1)}\right|$ for $\alpha>s$.

Numerical solutions are given by Jun Sato.

The ground state should correspond to the criticality of the $\mathrm{SU}(2)$ WZW model with level $k=2 s(c=3 s /(s+1))$.

For the homogeneous chain where $\xi_{p}=0$ for $p=1,2, \ldots, N_{s}$, we denote the density of string centers by $\rho(\lambda)$.

$$
\begin{equation*}
\rho(\lambda)=\frac{1}{2 \zeta \cosh (\pi \lambda / \zeta)} \tag{48}
\end{equation*}
$$

Multiple integral representations of the correlation function for an arbitrary product of elementary operators
We define a spin- s correlation function by

$$
\begin{equation*}
\widehat{F}^{(2 s w)}\left(\left\{\epsilon_{j}, \epsilon_{j}^{\prime}\right\}\right)=\left\langle\psi_{g}^{(2 s w)}\right| \prod_{i=1}^{m} \widehat{E}_{i}^{m_{i}, n_{i}(2 s w)}\left|\psi_{g}^{(2 s w)}\right\rangle /\left\langle\psi_{g}^{(2 s w)} \mid \psi_{g}^{(2 s w)}\right\rangle \tag{49}
\end{equation*}
$$

For the m th product of elementary operators, we introduce the sets of variables $\varepsilon_{\alpha}^{[k]^{\prime}} \mathrm{S}$ and $\varepsilon_{\beta}^{[k]} \mathrm{S}(1 \leq k \leq m)$ such that the number of $\varepsilon_{\alpha}^{[k]^{\prime}}=1$ with $1 \leq a \leq 2 s$ is given by i_{k} and the number of $\varepsilon_{\beta}^{[k]}=1$ with $1 \leq b \leq 2 s$ by j_{k}, respectively. Here, the variables $\varepsilon_{\alpha}^{[k]^{\prime}}$ and $\varepsilon_{\beta}^{[k]}$ take only two values 0 or 1 . We then express them by integers $\varepsilon_{j}^{\prime} \mathrm{s}$ and ε_{j} s for $j=1,2, \ldots, 2 s m$ as follows:

$$
\begin{align*}
& \varepsilon_{2 s(k-1)+\alpha}^{\prime}=\varepsilon_{\alpha}^{[k]^{\prime}} \text { for } \quad \alpha=1,2, \ldots, 2 s ; k=1,2, \ldots, m \\
& \varepsilon_{2 s(k-1)+\beta}=\varepsilon_{\beta}^{[k]} \quad \text { for } \quad \beta=1,2, \ldots, 2 s ; k=1,2, \ldots, m \tag{50}
\end{align*}
$$

Let us define $\boldsymbol{\alpha}^{-}$and $\boldsymbol{\alpha}^{+}$by

$$
\begin{equation*}
\boldsymbol{\alpha}^{-}=\left\{j ; \epsilon_{j}=0\right\}, \quad \boldsymbol{\alpha}^{+}=\left\{j ; \epsilon_{j}^{\prime}=1\right\} \tag{51}
\end{equation*}
$$

For sets $\boldsymbol{\alpha}^{-}$and $\boldsymbol{\alpha}^{+}$we define $\tilde{\lambda}_{j}$ for $j \in \boldsymbol{\alpha}^{-}$and $\tilde{\lambda}_{j}^{\prime}$ for $j \in \boldsymbol{\alpha}^{+}$, respectively, by the following relation:

$$
\begin{equation*}
\left(\tilde{\lambda}_{j_{\max }^{\prime}}^{\prime}, \ldots, \tilde{\lambda}_{j_{\min }^{\prime}}^{\prime}, \tilde{\lambda}_{j_{\min }}, \ldots, \tilde{\lambda}_{j_{\max }}\right)=\left(\lambda_{1}, \ldots, \lambda_{2 s m}\right) \tag{52}
\end{equation*}
$$

We have

$$
\begin{align*}
& \quad \widehat{F}^{(2 s w)}\left(\left\{\epsilon_{j}, \epsilon_{j}^{\prime}\right\}\right)=\widehat{C}\left(\left\{i_{k}, j_{k}\right\}\right) \times \\
& =\left(\int_{-\infty+i \epsilon}^{\infty+i \epsilon}+\cdots+\int_{-\infty-i(2 s-1) \zeta+i \epsilon}^{\infty-i(2 s-1) \zeta+i \epsilon}\right) d \lambda_{1} \\
& \\
& \cdots\left(\int_{-\infty+i \epsilon}^{\infty+i \epsilon}+\cdots+\int_{-\infty-i(2 s-1) \zeta+i \epsilon}^{\infty-i(2 s-1) \zeta+i \epsilon}\right) d \lambda_{s^{\prime}} \\
& \left(\int_{-\infty-i \epsilon}^{\infty-i \epsilon}+\cdots+\int_{-\infty-i(2 s-1) \zeta-i \epsilon}^{\infty-i(2 s-1) \zeta-i \epsilon}\right) d \lambda_{s^{\prime}+1} \\
& \tag{53}\\
& \quad \cdots\left(\int_{-\infty-i \epsilon}^{\infty-i \epsilon}+\cdots+\int_{-\infty-i(2 s-1) \zeta-i \epsilon}^{\infty-i(2 s-1) \zeta-i \epsilon}\right) d \lambda_{m} \\
& \quad \times \sum_{\boldsymbol{\alpha}^{+}\left(\left\{\epsilon_{j}\right\}\right)} Q\left(\left\{\epsilon_{j}, \epsilon_{j}^{\prime}\right\} ; \lambda_{1}, \ldots, \lambda_{2 s m}\right) \operatorname{det} S\left(\lambda_{1}, \ldots, \lambda_{2 s m}\right)
\end{align*}
$$

Here factor Q is given by

$$
\begin{align*}
& Q\left(\left\{\epsilon_{j}, \epsilon_{j}^{\prime}\right\}\right) \\
= & (-1)^{\alpha_{+}} \frac{\prod_{j \in \boldsymbol{\alpha}^{-}}\left(\prod_{k=1}^{j-1} \varphi\left(\tilde{\lambda}_{j}-w_{k}^{(2 s)}+\eta\right) \prod_{k=j+1}^{2 s m} \varphi\left(\tilde{\lambda}_{j}-w_{k}^{(2 s)}\right)\right)}{\prod_{1 \leq k<\ell \leq 2 s m} \varphi\left(\lambda_{\ell}-\lambda_{k}+\eta+\epsilon_{\ell, k}\right)} \\
& \times \frac{\prod_{j \in \boldsymbol{\alpha}^{+}}\left(\prod_{k=1}^{j-1} \varphi\left(\tilde{\lambda}_{j}^{\prime}-w_{k}^{(2 s)}-\eta\right) \prod_{k=j+1}^{2 s m} \varphi\left(\tilde{\lambda}_{j}^{\prime}-w_{k}^{(2 s)}\right)\right)}{\prod_{1 \leq k<\ell \leq 2 s m} \varphi\left(w_{k}^{(2 s)}-w_{\ell}^{(2 s)}\right)} \tag{54}
\end{align*}
$$

The matrix elements of S are given by

$$
\begin{equation*}
S_{j, k}=\rho\left(\lambda_{j}-w_{k}^{(2 s)}+\eta / 2\right) \delta\left(\alpha\left(\lambda_{j}\right), \beta(k)\right), \quad \text { for } \quad j, k=1,2, \ldots, 2 s m . \tag{55}
\end{equation*}
$$

Here $\delta(\alpha, \beta)$ denotes the Kronecker delta and $\alpha\left(\lambda_{j}\right)$ are given by a if $\lambda_{j}=\mu_{j}-(a-1 / 2) \eta$ $(1 \leq a \leq 2 s)$, where μ_{j} correspond to centers of complete $2 s$-strings.

In the denominator, we have set $\epsilon_{k, l}$ associated with λ_{k} and λ_{l} as follows.

$$
\epsilon_{k, l}=\left\{\begin{array}{rrl}
i \epsilon & \text { for } & \operatorname{Im}\left(\lambda_{k}-\lambda_{l}\right)>0 \tag{56}\\
-i \epsilon & \text { for } & \operatorname{Im}\left(\lambda_{k}-\lambda_{l}\right)<0
\end{array}\right.
$$

The coefficient $\widehat{C}^{(2 s)}\left(\left\{i_{k}, j_{k}\right\}\right)$ is given by

$$
\begin{align*}
\widehat{C}^{(2 s)}\left(\left\{i_{k}, j_{k}\right\}\right) & =\prod_{k=1}^{m} \widehat{N}_{i_{k}, j_{k}}^{(\ell)} \\
& =\prod_{k=1}^{m}\left(\frac{g\left(j_{k}\right)}{g\left(i_{k}\right)} \frac{F\left(2 s, i_{k}\right)}{F\left(2 s, j_{k}\right)} q^{i_{k}\left(2 s-i_{k}\right) / 2-j_{k}\left(2 s-j_{k}\right) / 2}\right) . \tag{57}
\end{align*}
$$

If we put $g(2 s, j)=\sqrt{F(2 s, j)}$ for $j=0,1, \ldots, 2 s$ into (57), we have

$$
\widehat{C}^{(2 s)}\left(\left\{i_{k}, j_{k}\right\}\right)=\prod_{k=1}^{m} \sqrt{\left[\begin{array}{c}
2 s \tag{58}\\
i_{k}
\end{array}\right]_{q}\left[\begin{array}{c}
2 s \\
j_{k}
\end{array}\right]_{q}^{-1}} .
$$

We may take any $\boldsymbol{\alpha}^{-}\left(\left\{\varepsilon_{j}^{\prime}\right\}\right)$ corresponding to $\varepsilon_{\alpha}^{[k]]^{\prime}}$ s for $k=1,2, \ldots, m$, as far as the number of $\varepsilon_{\alpha}^{[k]^{\prime}}=1$ with $1 \leq \alpha \leq 2 s$ is given by i_{k} for each k.

7 Evaluating the integrals for the spin- 1 one-point function

Evaluating the multiple integrals explicitly, we have obtained all the one-point function for the integrable spin- 1 XXZ chain as

$$
\begin{align*}
& \left.E^{2,2(2 p)}\right\rangle=\left\langle E^{0,0(2 p)}\right\rangle=\frac{\zeta-\sin \zeta \cos \zeta}{2 \zeta \sin ^{2} \zeta} \\
& \left\langle E^{1,1(2 p)}\right\rangle=\frac{\cos \zeta(\sin \zeta-\zeta \cos \zeta)}{\zeta \sin ^{2} \zeta} \tag{59}
\end{align*}
$$

In particular, via evaluation of the multiple integrals, we have confirmed the uniaxial symmetry relation:

$$
\begin{equation*}
\left\langle E^{22}\right\rangle=\left\langle E^{00}\right\rangle \tag{60}
\end{equation*}
$$

Through the direct evaluation of the multiple integrals we confirm the identity: $\left\langle E^{22}\right\rangle+$ $\left\langle E^{11}\right\rangle+\left\langle E^{00}\right\rangle=1$.
Furthermore, we have confirmed the relations among the correlation functions:

$$
\begin{equation*}
\left\langle E^{1,1(2 p)}\right\rangle=2\left\langle e_{1}^{0,0} e_{2}^{1,1}\right\rangle=2\left\langle e_{1}^{1,1} e_{2}^{0,0}\right\rangle=2\left\langle e_{1}^{0,1} e_{2}^{1,0}\right\rangle=2\left\langle e_{1}^{1,0} e_{2}^{0,1}\right\rangle \tag{61}
\end{equation*}
$$

Figure 2: Comparison with the exact numerical diagonalization. The red and blue lines represent analytical results obtained by the multiple integrals for $\left\langle E^{22}\right\rangle=\left\langle E^{00}\right\rangle$ and $\left\langle E^{11}\right\rangle$, respectively. The black dotted lines represent those obtained by exact diagonalization with the system size $N_{s}=8$. (Due to Jun Sato)

8 Spin- s quantum impurity: Form factors of the impurity

Let us consider the fusion transfer matrix whose quantum state is given by

$$
V^{(2 s)} \otimes V^{(1)} \otimes \cdots \otimes V^{(1)}
$$

Here the spin- s site corresponds to the quantum impurity.
(1) N. Andrei and H. Johannesson, Phys. Lett. A (1984) pp. 108-112;
(2) P. Schlottmann, Nucl. Phys. B 552 (1999) pp. 727-747.

Proposition 4. Let i_{1} and j_{1} be integers with $1 \leq i_{1}, j_{1} \leq 2 s$. We set $i_{1}-j_{1}=N-M$. Let $\left\{\mu_{k}\right\}_{N}$ be arbitrary. For a set of Bethe roots $\left\{\lambda_{\beta}(\epsilon)\right\}_{M}$ which approaches $\left\{\lambda_{\beta}\right\}_{M}$ continuously at $\epsilon=0$ we have

$$
\begin{align*}
& \langle 0| \prod_{\alpha=1}^{N} C^{(\operatorname{mx} w)}\left(\mu_{a}\right) \cdot \widehat{E}_{1}^{i_{1}, j_{1}(2 s w)} \cdot \prod_{\beta=1}^{M} B^{(\operatorname{mx} w)}\left(\lambda_{\beta}\right)|0\rangle=\widehat{N}_{i_{1}, j_{1}}^{(2 s)} e^{\sigma(w)\left(\sum_{k} \mu_{k}-\sum_{\gamma} \lambda_{\gamma}\right)} \\
& \times \sum_{\left(\varepsilon_{\beta}\left(j_{1}\right)\right)_{\ell}} \lim _{\epsilon \rightarrow 0}\langle 0| \prod_{\alpha=1}^{N} C^{(\operatorname{mx} p ; \epsilon)}\left(\mu_{a}\right) T_{\varepsilon_{1}\left(j_{1}\right), \varepsilon_{1}^{\prime}\left(i_{1}\right)}^{(\operatorname{mx} p ; \epsilon)}\left(w_{1}^{(\mathrm{mx} ; \epsilon)}\right) \cdots T_{\varepsilon_{2 s}\left(j_{1}\right), \varepsilon_{2 s}^{\prime}\left(j_{2 s}\right)}^{(\operatorname{mx} p ; \epsilon)}\left(w_{2 s}^{(\mathrm{mx} ; \epsilon)}\right) \\
& \times \prod_{\beta=1}^{M} B^{(\operatorname{mx} p ; \epsilon)}\left(\lambda_{\beta}(\epsilon)\right)|0\rangle \phi_{2 s}\left(\left\{\lambda_{\beta}\right\} ;\left\{w_{j}^{(\mathrm{mx})}\right\}\right) . \quad(\operatorname{mx}=2 s \otimes 1 \otimes \cdots \otimes 1) \tag{62}
\end{align*}
$$

9 Quantum Dynamics: 1D bosons interacting with δ-function potentials

The Lieb-Liniger Hamiltoninan is given by

$$
\mathcal{H}_{L L}=-\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}+\sum_{j, k=1}^{N} c \delta\left(x_{j}-x_{k}\right) .
$$

We introduce field operators for the 1D bosons, $\psi(x), \psi(x)^{\dagger}$ satisfying the commutation relations:

$$
\left[\psi(x), \psi^{\dagger}(y)\right]=\delta(x-y)
$$

In the second quantized form, we have for $\mathcal{H}_{L L}$

$$
\mathcal{H}=\int_{0}^{L}\left\{\partial_{x} \psi^{\dagger}(x) \partial_{x} \psi(x)+c \psi^{\dagger}(x) \psi^{\dagger}(x) \psi(x) \psi(x)\right\} d x
$$

The field operators satisfy the nonlinear Schrödinger equation:

$$
i \partial_{t} \psi=-\partial_{x}^{2} \psi+2 c \psi^{\dagger} \psi^{\dagger} \psi
$$

Density-density dynamical correlation function

The density operator is defined by

$$
\rho(x, t)=\psi^{\dagger}(x, t) \psi(x, t)
$$

The density-density dynamical correlation function, $G_{2}(x, t)$, is defined by

$$
\begin{aligned}
\langle\rho(x, t) \rho(0,0)\rangle & =\langle g| \rho(x, t) \rho(0,0)|g\rangle /\langle g \mid g\rangle \\
& =\sum_{\mu}\langle g| \rho(x, t)|\mu\rangle\langle\mu| \rho(0,0)|g\rangle /\langle g \mid g\rangle\langle\mu \mid \mu\rangle \\
& =\sum_{\mu} e^{i\left(E_{g}-E_{\mu}\right) t-\left(P_{g}-P_{\mu}\right) x} W\left(\mu, \lambda_{g}\right) \\
W\left(\mu, \lambda_{g}\right) & =\left|F\left(\mu, \lambda_{g}\right)\right|^{2} /\langle g \mid g\rangle\langle\mu \mid \mu\rangle
\end{aligned}
$$

Here, $|g\rangle$ denote the ground state, and λ_{g} the set of rapidities for the ground state. The form factor $F\left(\mu, \lambda_{g}\right)$ can be evaluated through Slavnov's formula. It is expressed in terms of a determinant.

Summary

- Part I: Reduction of spin- s form factors through fusion method
(1) Formula for expressing the spin- s operators with spin-1/2 ones (revised verion)
(2): "Quantum Inverse Scattering Problem" for spin- s case

We do not solve it for operators but for matrix elements (i.e., form factors).

- Part II: Physical application 1
(1): Multiple-integral representation of arbitrary correlation functions for the integrable spin- s XXZ spin chain (massless) (revised version)
(2): Numerical confirmation
- Part III: Physical application 2

Form factors of the spin- s quantum impurity in the XXZ chain

- Motivations: Super-integrable chiral Potts chain, Quantum Dynamics

[^0]: ${ }^{1}$ Talk given in Dijon, Sep. 7, 2011

