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1 Integrable spin-s XXZ Hamiltonians

Spin-1/2 case:

The Hamiltonian of the XXZ spin chain under the periodic boundary conditions (P.B.C.)

is given by

HXXZ =

L∑
j=1

(
σXj σ

X
j+1 + σYj σ

Y
j+1 +∆σZj σ

Z
j+1

)
. (1)

Here σaj (a = X,Y, Z) are the Pauli matrices defined on the jth site and ∆ denotes the

anisotropy of the exchange coupling. The P.B.C. are given by σaL+1 = σa1 for a = X,Y, Z.

Here we define

∆ = (q + q−1)/2 , (q = exp η).

|∆| > 1 : massive regime

|∆| < 1 : massless regime (CFT with c = 1).



The integrable spin-1 XXZ Hamiltonian

The spin-1 XXZ Hamiltonian under the P.B.C. is given by the following:

Hspin−1XXZ

= J

Ns∑
j=1

{
S⃗j · S⃗j+1 − (S⃗j · S⃗j+1)

2 − 1

2
(q − q−1)2[SzjS

z
j+1 − (SzjS

z
j+1)

2 + 2(Szj )
2]

−(q + q−1 − 2)[(Sxj S
x
j+1 + SyjS

y
j+1)S

z
jS

z
j+1 + SzjS

z
j+1(S

x
j S

x
j+1 + SyjS

y
j+1)
}
. (2)

In the massless regime we assume q = exp iζ with 0 ≤ ζ < π/2s. (η = iζ)

In the massive regime q = exp ζ with ζ > 0.

In the massless regime, the ground state of the integrable spin-s XXZ spin chain corre-

sponds to the criticality described by the SU(2) WZW model with level 2s.

We set L = 2sNs. We often denote 2s by ℓ. (ℓ are integers.)



Spin-s XXZ Hamiltonian expressed with the q-Clebsch-Gordan coeffi-

ciants

H(2s)
XXZ =

d

dλ
log t

(2s, 2s)
12···Ns (λ)

∣∣∣∣
λ=0, ξj=0

=

Ns∑
i=1

d

du
Ř

(2s,2s)
i,i+1 (u)

∣∣∣∣
u=0

where t
(2s, 2s)
12···Ns (λ) denotes the transfer matrix of the integrable spin-s XXZ chain. Here, the

elements of the R-matrix for V (l1)⊗ V (l2) are given by (cf. [T.D. and K. Motegi])

Ř|l1, a1⟩ ⊗ |l2, a2⟩ =
∑
b1,b2

Řb1,b2
a1,a2

|l1, b1⟩ ⊗ |l2, b2⟩,

Řb1,b2
a1,a2

=δa1+a2,b1+b2N(l1, a1)N(l2, a2)

min(l1,l2)∑
j=0

N(l1 + l2 − 2j, a1 + a2)
−1

× ρl1+l2−2j

[
l2 l1 l1 + l2 − 2j

b1 b2 a1 + a2

][
l1 l2 l1 + l2 − 2j

a1 a2 a1 + a2

]



2 Algebraic Bethe ansatz

We define the R-matrix and the monodromy matrix T0,12···L(λ; {wj}) by

R12(λ1, λ2) =


1 0 0 0

0 b(u) c(u) 0

0 c(u) b(u) 0

0 0 0 1


[1,2]

T0,12···L(λ; {wj}) = R0L(λ,wL)R0L−1(λ,wL−1) · · ·R02(λ,w2)R01(λ,w1) .

Here u = λ1−λ2, b(u) = sinh u/ sinh(u+η) and c(u) = sinh η/ sinh(u+η) with q = exp η.

The operator-valued matrix elements of give the “creation and annihilation operators”

T0,12···L(u; {wj}) =

(
A(u) B(u)

C(u) D(u)

)
[0]

.

The transfer matrix, t(u), is given by the trace of the monodromy matrix with respect to

the 0th space:

t(u;w1, . . . , wL) = tr0 (T0,12···L(u; {wj}))
= A(u; {wj}) +D(u; {wj}) . (3)



3 Fusion method

First trick:

Applying the R-matrix R+ in homogeneous grading to the fusion con-

struction

Through a similarity transformation we transform R to R+

R+
12(u) =


1 0 0 0

0 b(u) c−(u) 0

0 c+(u) b(u) 0

0 0 0 1


[1,2]

. (4)

c±(u) = e±u sinh η/ sinh(u + η) b(u) = sinh u/ sinh(u + η)

The R+ gives the intertwiner of the affine quantum group Uq(ŝl2) in the homogeneous

grading of evaluation representations:

R+
12(u) (∆(a))12 = (τ ◦∆(a))12R

+
12(u) a ∈ Uq(sl2)

where τ denotes the permutation operator: τ (a ⊗ b) = b ⊗ a for a, b ∈ Uq(sl2), and

(∆(a))12 = π1 ⊗ π2 (∆(a)).



Gauge transformation

We define the gauge transformation χ12···L by

χ12···L = Φ1(w1)Φ2(w2) · · ·ΦL(wL) . (5)

Here

Φ(w) = diag(1, exp(w))

and wj denote the inhomogeneity parameters of the spin-1/2 transfer matrix of the XXZ

spin chain for j = 1, 2, . . . , L.



Projection operators and the fusion constrution

We define permutation operator Π12 by

Π12v1 ⊗ v2 = v2 ⊗ v1 , (6)

and then define Ř by

Ř+
12(u) = Π12R

+
12 (7)

We define spin-1 projection operator by

P
(2)
12 = Ř+

12(u = η) (8)

We define spin− ℓ/2 projection operator recursively as follows.

P
(ℓ)
12···ℓ = P

(ℓ−1)
12···ℓ−1Ř

+
ℓ−1,ℓ((ℓ− 1)η)P

(ℓ−1)
12···ℓ−1 , (9)



We define monodromy matrix T
(1, 2s)
0 (λ0; ξ1, . . . , ξNs) acting on the tensor product

V (1)(λ0)⊗
(
V (2s)(ξ1)⊗ · · · ⊗ V (2s)(ξNs)

)
as follows.

T
(1, 2s)
0 (λ0; ξ1, . . . , ξNs) = P

(2s)
12...L · R+

0,12···L(λ0;w
(2s)
1 , . . . , w

(2s)
L ) · P (2s)

12...L . (10)

Here inhomogenous parameters wj are given by complete 2s-strings

w
(2s)
2s(p−1)+k = ξp − (k − 1)η (p = 1, 2, . . . , Ns; k = 1, . . . , 2s.)

More precisely, we shall put them as almost complete 2s-strings

w
(2s; ϵ)
2s(p−1)+k = ξp − (k − 1)η + ϵrk (p = 1, 2, . . . , Ns; k = 1, . . . , 2s.)

We express the matrix elements of the monodromy matrix as follows.

T
(1, 2s)
0, 12···Ns(λ; {ξk}Ns) =

(
A(2s)(λ; {ξk}Ns) B(2s)(λ; {ξk}Ns)
C(2s)(λ; {ξk}Ns) D(2s)(λ; {ξk}Ns)

)
. (11)

A(2s)(λ; {ξk}Ns) = P
(2s)
12···L · A

(1)(λ; {w(2s)
j }L) · P (2s)

12···L



c1 = α c2 cNs cNs + 1 = β
· · ·

· · ·

a1

b1

a2

b2

aNs

bNs

Figure 1: Matrix element of the monodromy matrix (T
(ℓ, 2s)
α,β )

a1,...,aNs
b1,...,bNs

.

Here quantum spaces V
(2s)
j (ξj) are (2s+ 1)-dimensional (vertical lines),

Variables aj and bj take values 0, 1, . . . , 2s

while the auxiliary space V
(ℓ)
0 (λ0) is (ℓ+ 1)-dimensional (horizontal line) . variables cj take values 0, 1, . . . , ℓ.

L = 2sNs

Spin-1/2 chain of L-sites with inhomogeneous parameters w1, . . . , wL,

while the spin-s chain of Ns sites with ξ1, . . . , ξNs .

We now define T
(ℓ, 2s)
0 (λ0; ξ1, . . . , ξNs) acting on

the tensor product V
(ℓ)
0 (λ0)⊗

(
V (2s)(ξ1)⊗ · · · ⊗ V (2s)(ξNs)

)
as follows.

T
(ℓ, 2s)
0, 12···Ns = P (ℓ)

a1a2···aℓ T
(1, 2s)
a1, 12···Ns(λa1)T

(1, 2s)
a2, 12···Ns(λa1 − η) · · ·

T
(1, 2s)
aℓ, 12···Ns(λa1 − (ℓ− 1)η)P (ℓ)

a1a2···aℓ .



4 Qunatum groups

The quantum algebra Uq(sl2) is an associative algebra over C generated by X±, K± with

the following relations:

KK−1 = KK−1 = 1 , KX±K−1 = q±2X± , ,

[X+, X−] =
K −K−1

q − q−1
. (12)

The algebra Uq(sl2) is also a Hopf algebra over C with comultiplication

∆(X+) = X+ ⊗ 1 +K ⊗X+ , ∆(X−) = X− ⊗K−1 + 1⊗X− ,

∆(K) = K ⊗K , (13)

and antipode: S(K) = K−1 , S(X+) = −K−1X+ , S(X−) = −X−K, and coproduct:

ϵ(X±) = 0 and ϵ(K) = 1.



[n]q = (qn − q−n)/(q − q−1): the q-integer of an integer n.

[n]q!: the q-factorial for an integer n.

[n]q! = [n]q [n− 1]q · · · [1]q . (14)

For integers m ≥ n ≥ 0, the q-binomial coefficient is defined by[
m

n

]
q

=
[m]q!

[m− n]q! [n]q!
. (15)

We define ||ℓ, 0⟩ for n = 0, 1, . . . , ℓ by

||ℓ, 0⟩ = |0⟩1 ⊗ |0⟩2 ⊗ · · · ⊗ |0⟩ℓ . (16)

Here |α⟩j for α = 0, 1 denote the basis vectors of the spin-1/2 rep. We define ||ℓ, n⟩ for
n ≥ 1 and evaluate them as follows .

||ℓ, n⟩ =
(
∆(ℓ−1)(X−)

)n
||ℓ, 0⟩ 1

[n]q!

=
∑

1≤i1<···<in≤ℓ

σ−i1 · · ·σ
−
in
|0⟩ qi1+i2+···+in−nℓ+n(n−1)/2 . (17)



We have conjugate vectors ⟨ℓ, n|| explicitly as folllows.

⟨ℓ, n|| =

[
ℓ

n

]−1

q

qn(ℓ−n)
∑

1≤i1<···<in≤ℓ

⟨0|σ+i1 · · ·σ
+
in
qi1+···+in−nℓ+n(n−1)/2 . (18)

Here the normalization conditions: ⟨ℓ, n|| ||ℓ, n⟩ = 1.

We can show

P (ℓ) =

ℓ∑
n=0

||ℓ, n⟩⟨ℓ, n||. (19)

Spin-ℓ/2 elementary operators

We shall define spin-s elementary operators by

Ei, j (ℓ) = ||ℓ, i⟩⟨ℓ, j||



5 Reduction formula for the spin-s XXZ form factors

||ℓ, 0⟩ = |0⟩1 ⊗ · · · ⊗ |0⟩ℓ we have the following:

||ℓ, 0⟩⟨ℓ, 0|| = |0⟩1 ⊗ · · · ⊗ |0⟩ℓ ⟨0|1 ⊗ · · · ⊗ ⟨0|ℓ
= |0⟩1 ⟨0|1 ⊗ · · · ⊗ |0⟩ℓ ⟨0|ℓ
= e0, 01 · · · e0, 0ℓ . (20)

We have

|0⟩1⟨0|1 = (1, 0)T (1, 0) =

(
1 0

0 0

)
= e0, 0 . (21)

We consider spin-1/2 elementary operators eε
′
, ε for ε

′
, ε = 0, 1, as follows.

e0, 1 =

(
0 1

0 0

)
, e1, 0 =

(
0 0

1 0

)
, e1, 1 =

(
0 0

0 1

)



For a given sequence, a1, a2, . . . , aN , we denote it by (aj)N , briefly; i.e., we have

(aj)N = (a1, a2, . . . , aN) . (22)

For (ε
′
α)ℓ and (εβ)ℓ consisting of only two values 0 or 1, we consider the following product:

ℓ∏
k=1

e
ε
′
k, εk
k = e

ε
′
1, ε1
1 · · · eε

′
ℓ, εℓ
ℓ . (23)

We define a set α− by the set of integers k satisfying ε
′
k = 1 for 1 ≤ k ≤ ℓ and a set

α+ by the set of integers k satisfying εk = 0 for 1 ≤ k ≤ ℓ, respectively:

α−({ε′α}) = {α; ε′α = 1 (1 ≤ α ≤ ℓ)} , α+({εβ}) = {β; εβ = 0 (1 ≤ β ≤ ℓ)} . (24)

Let us denote by Σℓ the set of integers 1, 2, . . . , ℓ;

Σℓ = {1, 2, . . . , ℓ}.

In terms of sets α± we express the product of elementary operators given by (23) as

ℓ∏
k=1

e
ε
′
k, εk
k =

∏
a∈α−

σ−a ||ℓ, 0⟩ ⟨ℓ, 0||
∏

b∈Σℓ\α+

σ+b . (25)



We express the elements of α− as a(k) for k = 1, 2, . . . , i, and those of Σℓ \α+ as b(k)

for k = 1, 2, . . . , j, respectively.

α− = {a(1), a(2), . . . , a(i)} , Σℓ \α+ = {b(1), b(2), . . . , b(j)} . (26)

Suppose that we have a sequence (ε
′
α)ℓ such that ε

′
α = 0 or 1 for all integers α with

1 ≤ α ≤ ℓ and the number of integers α satisfying ε
′
α = 1 (1 ≤ α ≤ ℓ) is given by i.

Then, we denote ε
′
α by ε

′
α(i) for each integer α and the sequence (ε

′
α)ℓ by (ε

′
α(i))ℓ.

Sequences (ε
′
α(i))ℓ and (εβ(j))ℓ are related to integers a(1) < a(2) < · · · < a(i) and

b(1) < b(2) < · · · < b(j), respectively, by

e
ε
′
1(i), ε1(j)
1 · · · eε

′
ℓ(i), εℓ(j)

ℓ = e1, 0a(1) · · · e
1, 0
a(i) e

0, 0
1 · · · e0, 0ℓ e0, 1b(1) · · · e

0, 1
b(j) , (27)

ℓ∏
k=1

e
ε
′
k(i), εk(j)

k =
∏
a∈α−

σ−a ||ℓ, 0⟩ ⟨ℓ, 0||
∏

b∈Σℓ\α+

σ+b . (28)



We define spin-ℓ/2 elementary operators associated with grading w by

Ei, j (ℓw) = ||ℓ, i⟩⟨ℓ, j||

We have

||ℓ, i⟩⟨ℓ, j|| =
∑

(ε
′
α(i))ℓ

∑
(εβ(j))ℓ

gij(ε
′
α(i), εβ(j))e

ε
′
1(i), ε1(j)
1 · · · eε

′
ℓ(i), εℓ(j)

ℓ . (29)

Here the sum is taken over all two sequences (ε
′
α(i))ℓ and (εβ(j))ℓ.

Lemma 1. Let α− be a set of distinct integers {a(1), . . . , a(i)} satisfying 1 ≤ a(1) <

. . . < a(i) ≤ ℓ, we have the following:

⟨ℓ, i||σ−a(1) · · ·σ
−
a(i)||ℓ, 0⟩ q

−(a(1)+···+a(i))+i =

[
ℓ

i

]−1

q

q−i(i−1)/2 , (30)

which is independent of the set α− = {a(1), a(2), . . . , a(i)}.



Proposition 1. For every pair of integers i and j with 1 ≤ i, j ≤ ℓ the spin-ℓ/2

elementary operator associated with grading w, E
i, j (ℓw)
1 , is decomposed into a sum

of products of the spin-1/2 elementary operators as follows.

E
i, j (ℓw)
1 =

[
ℓ

i

]
q

[
ℓ

j

]−1

q

qi(i−1)/2−j(j−1)/2e−(i−j)ξ1

×P (ℓ)
12...ℓ

∑
(εβ(j))ℓ

χ12···ℓ e
ε
′
1(i), ε1(j)
1 · · · eε

′
ℓ(i), εℓ(j)

ℓ χ−1
12···ℓ . (31)

Here, we fix a sequence (ε
′
α(i))ℓ . Furthermore, the expression (31) does not depend

on the order of ε
′
α(i) s with respect to αs.



Quantum inverse-scattering problem

Let us recall the formula of the quantum inverse-scattering problem (QISP) for the

spin-1/2 XXZ spin chain (Kitanine et al, 1999)

xn =

n−1∏
k=1

(
A(1w) +D(1w)

)
(wk) · tr0

(
x0T

(1w)
0, 12···L(wn)

)
·

n∏
k=1

(
A(1w) +D(1w)

)−1

(wk) .

(32)

Here we assume that inhomogeneity parameters wj are given by generic values so that the

transfer matrices
(
A(1w) +D(1w)

)
(wk) are regular for k = 1, 2, . . . , n.

Making use of the QISP formula (32) we have the following expressions for b = 1, 2, . . . , Ns:

e
ε
′
1,ε1
ℓ(b−1)+1 · · · e

ε
′
ℓ,εℓ
ℓ(b−1)+ℓ =

ℓ(b−1)∏
k=1

(
A(1w)(wk) +D(1w)(wk)

)
×T (1w)

ε1, ε
′
1

(wℓ(b−1)+1) · · ·T
(1w)

εℓ, ε
′
ℓ

(wℓ(b−1)+ℓ)

ℓb∏
k=1

(
A(1w)(wk) +D(1w)(wk)

)−1

. (33)

Here we have denoted by Tα,β(λ) the (α, β) element of the monodromy matrix T (λ).



“Quantum inverse-scattering problem” for the spin-ℓ/2 operators

Ê
i j (ℓw)
1 = N̂

(ℓ)
i, j e

−(i−j)Λ1δ(w,p) · P (ℓ)
1···ℓ ×

× χ12···ℓ
∑

(εβ(j))ℓ

T
(1w)

ε1(j), ε
′
1(i)

(w1) · · ·T (1w)

εℓ(j), ε
′
ℓ(i)

(wℓ)
ℓ∏

k=1

(
A(1w)(wk) +D(1w)(wk)

)−1

χ−1
12···ℓ .

Here, we fix a sequence (ε
′
α(i))ℓ.

Problem: Non-regularity of the transfer matrix

Putting λ = w
(2)
1 = ξ1 we have

A
(2+; 0)
12 (ξ1) +D

(2+; 0)
12 (ξ1) =


1 0 0 0

0 1
[2]q

q−1

[2]q
0

0 q
[2]q

1
[2]q

0

0 0 0 1


[1,2]

. (34)

We thus show that the transfer matrix is non-regular at λ = w
(2)
1 = ξ1:

det
(
A

(2+; 0)
12 (ξ1) +D

(2+; 0)
12 (ξ1)

)
= 0. (35)



A “solution” to the spin-s QISP through continuity assumption of solu-

tions of the Bethe-ansatz equations

Let us now assume that the Bethe roots {λβ(ϵ)}M approach the Bethe roots {λβ}M
continuously in the limit of sending ϵ to 0. It follows that each entry of the Bethe-ansatz

eigenstate of the Bethe roots {λβ(ϵ)}M is continuous with respect to ϵ. For a set of

arbitrary parameters {µk}N we therefore have

⟨0|
N∏
α=1

C(ℓ p; 0)(µa) · e
ε
′
1, ε1
1 · · · eε

′
ℓ, εℓ
ℓ ·

M∏
β=1

B(ℓ p; 0)(λβ)|0⟩

= lim
ϵ→0

⟨0|
N∏
α=1

C(ℓ p; ϵ)(µa) · e
ε
′
1, ε1
1 · · · eε

′
ℓ, εℓ
ℓ ·

M∏
β=1

B(ℓ p; ϵ)(λβ(ϵ))|0⟩ . (36)



Solution to the spin-s QISP for the matrix elements (form factors)

We have the following expressions for b = 1, 2, . . . , Ns:

e
ε
′
1,ε1
ℓ(b−1)+1 · · · e

ε
′
ℓ,εℓ
ℓ(b−1)+ℓ =

ℓ(b−1)∏
k=1

(
A(ℓw; ϵ)(w

(ℓ; ϵ)
k ) +D(ℓw; ϵ)(w

(ℓ; ϵ)
k )

)
×T (ℓw; ϵ)

ε1,ε
′
1

(w
(ℓ; ϵ)
ℓ(b−1)+1) · · ·T

(ℓw; ϵ)

εℓ,ε
′
ℓ

(w
(ℓ; ϵ)
ℓ(b−1)+ℓ)

ℓb∏
k=1

(
A(ℓw; ϵ)(w

(ℓ; ϵ)
k ) +D(ℓw; ϵ)(w

(ℓ; ϵ)
k )

)−1

.

For instance in the case of b = 1, we have

⟨0|
N∏
α=1

C(ℓ p; ϵ)(µa) · e
ε
′
1, ε1
1 · · · eε

′
ℓ, εℓ
ℓ ·

M∏
β=1

B(ℓ p; ϵ)(λβ(ϵ))|0⟩

= ϕℓ({λβ}; {w(ℓ)
j }) ⟨0|

N∏
α=1

C(ℓ p; ϵ)(µa) · T (ℓ p; ϵ)

ε1, ε
′
1

(w
(ℓ; ϵ)
1 ) · · ·T (ℓ p; ϵ)

εℓ, ε
′
ℓ

(w
(ℓ;ϵ)
ℓ ) ·

×
M∏
β=1

B(ℓ p; ϵ)(λβ(ϵ))|0⟩ .

(37)



Proposition 2. Let {µk}N be a set of arbitrary parameters and {λα}M a solution of

the spin-ℓ/2 Bethe-ansatz equations. We denote by {λα(ϵ)}M a solution of the Bethe-

ansatz equations for the spin-1/2 XXZ chain whose inhomogeneity parameters wj are

given by the Ns pieces of the almost complete ℓ-strings: wj = w
(ℓ; ϵ)
j for 1 ≤ j ≤ L.

We assume that the set {λα(ϵ)}M approaches {λα}M continuously when we send ϵ

to zero. For the Bethe states ⟨{µk}N | and |{λα}M⟩, which are off-shell and on-

shell, respectively, we evaluate the matrix elements of a given product of elementary

operators e
ε
′
1,ε1
1 · · · eε

′
ℓ,εℓ
ℓ as follows.

⟨0|
N∏
α=1

C(ℓ p; 0)(µa) e
ε
′
1,ε1
1 · · · eε

′
ℓ,εℓ
ℓ

M∏
β=1

B(ℓ p; 0)(λβ)|0⟩ = ϕℓ({λβ}; {w(ℓ)
j })

× lim
ϵ→0

⟨0|
N∏
α=1

C(ℓ p; ϵ)(µa)T
(ℓ p; ϵ)

ε1, ε
′
1

(w
(ℓ; ϵ)
1 ) · · ·T (ℓ p; ϵ)

εℓ, ε
′
ℓ

(w
(ℓ; ϵ)
ℓ )

M∏
β=1

B(ℓ p; ϵ)(λβ(ϵ))|0⟩ ,

(38)

where ϕm({λβ}) has been defined by ϕm({λβ}; {wj}) =
∏m

j=1

∏M
α=1 b(λα − wj) with

b(u) = sinh(u)/ sinh(u + η).



General spin-ℓ/2 elementary operators

In the spin-ℓ/2 representation constructed in the ℓth tensor product space (V (1))⊗ℓ, we

define the general spin-s elementary operators associated with principal grading, Êi, j (ℓ p),

by

Êi, j (ℓ p) = ||ℓ, i⟩ ⟨ℓ, j|| g(j)
g(i)

, for i, j = 0, 1, . . . , ℓ. (39)

Then, through the spin-ℓ/2 gauge transformation we define the general spin-s elementary

operators associated with homogeneous grading by

Êi, j (ℓ+) = χ
(ℓ)
12...Ns

Êi, j (ℓ p)
(
χ
(ℓ)
12...Ns

)−1

. (40)

We explicitly have

Êi, j (ℓ+) = ||ℓ, i⟩ ⟨ℓ, j|| g(j)
g(i)

e(i−j)(ξ−(ℓ−1)η/2), for i, j = 0, 1, . . . , ℓ. (41)

Here we recall that the quantity ξ − (ℓ − 1)η/2 corresponds to the string center of the

ℓ-string: ξ, ξ − η, . . . , ξ − (ℓ− 1)η.



We define the general spin-ℓ/2 elementary operators associated with principal grading

acting in the tenor product space V
(ℓ)
1 ⊗ · · ·V (ℓ)

Ns
by

Ê
i, j (ℓ p)
k = (I(ℓ))⊗(k−1) ⊗ Êi, j (ℓ p) ⊗ (I(ℓ))⊗(Ns−k) , for i, j = 0, 1, . . . , ℓ. (42)

Similarly we define that of homogeneous grading, Ê
i, j (ℓ,+)
k for i, j = 0, 1, . . . , ℓ.

Let us introduce the normalization factor N̂
(ℓ)
i, j by N̂

(ℓ)
i, j = N

(ℓ)
i, jg(i)/g(j). We have

N̂
(ℓ)
i, j =

g(j)

g(i)

F (ℓ, i)

F (ℓ, j)
qi(ℓ−i)/2−j(ℓ−j)/2. (43)

We define δ(w, p) for gradings ± and p by

δ(w, p) =

{
1 if w = p,

0 otherwise.
(44)

With factor N̂
(ℓ)
i, j and the string center: Λ1 = ξ1− (ℓ− 1)η/2, from Proposition 1, we have

Ê
i, j (ℓw)
1 = N̂

(ℓ)
i, j e

−(i−j)Λ1 δ(w,p) P
(ℓ)
12...ℓ

∑
(εβ(j))ℓ

χ12···ℓ e
ε
′
1(i), ε1(j)
1 · · · eε

′
ℓ(i), εℓ(j)

ℓ χ−1
12···ℓ . (45)

Here, we recall that sequence (ε
′
α(i))ℓ is fixed.



Proposition 3. Let us take integers ik and jk satisfying 1 ≤ ik, jk ≤ ℓ for k =

1, 2, . . . ,m. We set
∑

k ik −
∑

k jk = N −M . Let {µk}N be a set of arbitrary N

parameters. If the set of the Bethe roots {λβ(ϵ)}M approaches the set of the Bethe

roots {λβ}M continuously at ϵ = 0, we have the following:

⟨0|
N∏
α=1

C(ℓw)(µa) ·
∏
k

Ê
ik, jk (ℓw)
k ·

M∏
β=1

B(ℓw)(λβ)|0⟩

=

(
m∏
k=1

N̂
(ℓk)
ik, jk

)
· eσ(w)(

∑N
k=1 µk−

∑M
γ=1 λγ) ϕℓ({λβ}; {w(ℓ)

j })
∑

(ε
[1]
β (j1))ℓ

· · ·
∑

(ε
[m]
β (jm))ℓ

× lim
ϵ→0

⟨0|
N∏
α=1

C(ℓ p; ϵ)(µa)

m∏
k=1

(
T

(ℓ p; ϵ)

ε
[k]
1 (jk), ε

[k]′
1 (ik)

(w
(ℓ; ϵ)
1 ) · · ·T (ℓ p; ϵ)

ε
[k]
ℓ (jk), ε

[k]′
ℓ (jk)

(w
(ℓ; ϵ)
ℓ )

)

×
M∏
β=1

B(ℓ p; ϵ)(λβ(ϵ))|0⟩ . (46)

Here we have chosen sequences ε
[k] ′
α (jk) for each integer k of 1 ≤ k ≤ m.



Here we consider a product of the general spin-ℓ/2 elementary operators,

Ê
i1, j1 (ℓw)
1 · · · Êim, jm (ℓw)

m .

We also recall variables ε
[k] ′
α (ik) and ε

[k]
β (jk) which take only two values 0 or 1 for k =

1, 2, . . . ,m and α, β = 0, 1, . . . , ℓ. We have the following:

For the mth product of elementary operators, we introduce the sets of variables ε
[k] ′
α s

and ε
[k]
β s (1 ≤ k ≤ m) such that the number of ε

[k] ′
α = 1 with 1 ≤ a ≤ 2s is given by ik

and the number of ε
[k]
β = 1 with 1 ≤ b ≤ 2s by jk, respectively. Here, the variables ε

[k] ′
α

and ε
[k]
β take only two values 0 or 1. We then express them by integers ε

′
js and εjs for

j = 1, 2, . . . , 2sm as follows:

ε
′
2s(k−1)+α = ε[k]

′
α for α = 1, 2, . . . , 2s; k = 1, 2, . . . ,m,

ε2s(k−1)+β = ε
[k]
β for β = 1, 2, . . . , 2s; k = 1, 2, . . . ,m. (47)



6 Multiple-integral representation for the spin-s XXZ CFs

The fundamental conjecture of the spin-s ground state

The spin-s ground state |ψ(2s)
g ⟩ is given by Ns/2 sets of 2s-strings for 0 ≤ ζ < π/2s.

λ(α)a = µa − (α− 1/2)η + ϵ(α)a , for a = 1, 2, . . . , Ns/2 and α = 1, 2, . . . , 2s.

Deviaions are given by ϵ
(α)
a =

√
−1δ

(α)
a where δ

(α)
a are real and decreasing w.r.t. α, and

|δ(α)a | > |δ(α+1)
a | for α < s, |δ(α)a | < |δ(α+1)

a | for α > s.

Numerical solutions are given by Jun Sato.

The ground state should correspond to the criticality of the SU(2) WZW model with

level k = 2s (c = 3s/(s + 1)).

For the homogeneous chain where ξp = 0 for p = 1, 2, . . . , Ns, we denote the density of

string centers by ρ(λ).

ρ(λ) =
1

2ζ cosh(πλ/ζ)
. (48)



Multiple integral representations of the correlation function for an arbi-

trary product of elementary operators

We define a spin-s correlation function by

F̂ (2sw)({ϵj, ϵ
′
j}) = ⟨ψ(2sw)

g |
m∏
i=1

Ê
mi , ni (2sw)
i |ψ(2sw)

g ⟩/⟨ψ(2sw)
g |ψ(2sw)

g ⟩ (49)

For the mth product of elementary operators, we introduce the sets of variables ε
[k] ′
α s

and ε
[k]
β s (1 ≤ k ≤ m) such that the number of ε

[k] ′
α = 1 with 1 ≤ a ≤ 2s is given by ik

and the number of ε
[k]
β = 1 with 1 ≤ b ≤ 2s by jk, respectively. Here, the variables ε

[k] ′
α

and ε
[k]
β take only two values 0 or 1. We then express them by integers ε

′
js and εjs for

j = 1, 2, . . . , 2sm as follows:

ε
′
2s(k−1)+α = ε[k]

′
α for α = 1, 2, . . . , 2s; k = 1, 2, . . . ,m,

ε2s(k−1)+β = ε
[k]
β for β = 1, 2, . . . , 2s; k = 1, 2, . . . ,m. (50)

Let us define α− and α+ by

α− = {j; ϵj = 0} , α+ = {j; ϵ′j = 1} . (51)



For sets α− and α+ we define λ̃j for j ∈ α− and λ̃
′
j for j ∈ α+, respectively, by the

following relation:

(λ̃
′

j
′
max
, . . . , λ̃

′

j
′
min

, λ̃jmin, . . . , λ̃jmax) = (λ1, . . . , λ2sm) . (52)

We have

F̂ (2sw)({ϵj, ϵ
′
j}) = Ĉ({ik, jk})×

=

(∫ ∞+iϵ

−∞+iϵ

+ · · · +
∫ ∞−i(2s−1)ζ+iϵ

−∞−i(2s−1)ζ+iϵ

)
dλ1

· · ·

(∫ ∞+iϵ

−∞+iϵ

+ · · · +
∫ ∞−i(2s−1)ζ+iϵ

−∞−i(2s−1)ζ+iϵ

)
dλs′(∫ ∞−iϵ

−∞−iϵ
+ · · · +

∫ ∞−i(2s−1)ζ−iϵ

−∞−i(2s−1)ζ−iϵ

)
dλs′+1

· · ·

(∫ ∞−iϵ

−∞−iϵ
+ · · · +

∫ ∞−i(2s−1)ζ−iϵ

−∞−i(2s−1)ζ−iϵ

)
dλm

×
∑

α+({ϵj})

Q({ϵj, ϵ
′
j};λ1, . . . , λ2sm) detS(λ1, . . . , λ2sm) (53)



Here factor Q is given by

Q({ϵj, ϵ
′
j})

= (−1)α+

∏
j∈α−

(∏j−1
k=1φ(λ̃j − w

(2s)
k + η)

∏2sm
k=j+1φ(λ̃j − w

(2s)
k )

)
∏

1≤k<ℓ≤2smφ(λℓ − λk + η + ϵℓ,k)

×

∏
j∈α+

(∏j−1
k=1φ(λ̃

′
j − w

(2s)
k − η)

∏2sm
k=j+1φ(λ̃

′
j − w

(2s)
k )

)
∏

1≤k<ℓ≤2smφ(w
(2s)
k − w

(2s)
ℓ )

(54)

The matrix elements of S are given by

Sj,k = ρ(λj − w
(2s)
k + η/2) δ(α(λj), β(k)) , for j, k = 1, 2, . . . , 2sm . (55)

Here δ(α, β) denotes the Kronecker delta and α(λj) are given by a if λj = µj− (a−1/2)η

(1 ≤ a ≤ 2s), where µj correspond to centers of complete 2s-strings.

In the denominator, we have set ϵk,l associated with λk and λl as follows.

ϵk,l =

{
iϵ for Im(λk − λl) > 0

−iϵ for Im(λk − λl) < 0.
(56)



The coefficient Ĉ(2s)({ik, jk}) is given by

Ĉ(2s)({ik, jk}) =

m∏
k=1

N̂
(ℓ)
ik, jk

=

m∏
k=1

(
g(jk)

g(ik)

F (2s, ik)

F (2s, jk)
qik(2s−ik)/2−jk(2s−jk)/2

)
. (57)

If we put g(2s, j) =
√
F (2s, j) for j = 0, 1, . . . , 2s into (57), we have

Ĉ(2s)({ik, jk}) =
m∏
k=1

√√√√[ 2s

ik

]
q

[
2s

jk

]−1

q

. (58)

We may take any α−({ε′j}) corresponding to ε
[k] ′
α s for k = 1, 2, . . . ,m, as far as the

number of ε
[k] ′
α = 1 with 1 ≤ α ≤ 2s is given by ik for each k.



7 Evaluating the integrals for the spin-1 one-point function

Evaluating the multiple integrals explicitly, we have obtained all the one-point function

for the integrable spin-1 XXZ chain as

E2, 2 (2 p)⟩ = ⟨E0, 0 (2 p)⟩ = ζ − sin ζ cos ζ

2ζ sin2 ζ
,

⟨E1, 1 (2 p)⟩ = cos ζ(sin ζ − ζ cos ζ)

ζ sin2 ζ
. (59)

In particular, via evaluation of the multiple integrals, we have confirmed the uniaxial

symmetry relation:

⟨E22⟩ = ⟨E00⟩ . (60)

Through the direct evaluation of the multiple integrals we confirm the identity: ⟨E22⟩ +
⟨E11⟩ + ⟨E00⟩ = 1.

Furthermore, we have confirmed the relations among the correlation functions:

⟨E1, 1 (2 p)⟩ = 2 ⟨e0,01 e1,12 ⟩ = 2 ⟨e1,11 e0,02 ⟩ = 2 ⟨e0,11 e1,02 ⟩ = 2 ⟨e1,01 e0,12 ⟩ . (61)



Figure 2: Comparison with the exact numerical diagonalization. The red and blue lines represent analytical results obtained by the multiple

integrals for ⟨E22⟩ = ⟨E00⟩ and ⟨E11⟩, respectively. The black dotted lines represent those obtained by exact diagonalization with the system

size Ns = 8. (Due to Jun Sato)



8 Spin-s quantum impurity: Form factors of the impurity

Let us consider the fusion transfer matrix whose quantum state is given by

V (2s) ⊗ V (1) ⊗ · · · ⊗ V (1)

Here the spin-s site corresponds to the quantum impurity.

(1) N. Andrei and H. Johannesson, Phys. Lett. A (1984) pp. 108-112;

(2) P. Schlottmann, Nucl. Phys. B 552 (1999) pp. 727-747.

Proposition 4. Let i1 and j1 be integers with 1 ≤ i1, j1 ≤ 2s. We set i1−j1 = N−M .

Let {µk}N be arbitrary. For a set of Bethe roots {λβ(ϵ)}M which approaches {λβ}M
continuously at ϵ = 0 we have

⟨0|
N∏
α=1

C(mxw)(µa) · Êi1, j1 (2sw)
1 ·

M∏
β=1

B(mxw)(λβ)|0⟩ = N̂
(2s)
i1, j1

eσ(w)(
∑
k µk−

∑
γ λγ)

×
∑

(εβ(j1))ℓ

lim
ϵ→0

⟨0|
N∏
α=1

C(mx p; ϵ)(µa)T
(mx p; ϵ)

ε1(j1), ε
′
1(i1)

(w
(mx; ϵ)
1 ) · · ·T (mx p; ϵ)

ε2s(j1), ε
′
2s(j2s)

(w
(mx; ϵ)
2s )

×
M∏
β=1

B(mx p; ϵ)(λβ(ϵ))|0⟩ ϕ2s({λβ}; {w(mx)
j }) . (mx = 2s⊗ 1⊗ · · · ⊗ 1) (62)



9 Quantum Dynamics: 1D bosons interacting with δ-function potentials

The Lieb-Liniger Hamiltoninan is given by

HLL = −
N∑
j=1

∂2

∂x2j
+

N∑
j,k=1

c δ(xj − xk) .

We introduce field operators for the 1D bosons, ψ(x), ψ(x)† satisfying the commutation

relations:

[ψ(x), ψ†(y)] = δ(x− y)

In the second quantized form, we have for HLL

H =

∫ L

0

{∂xψ†(x)∂xψ(x) + c ψ†(x)ψ†(x)ψ(x)ψ(x)}dx

The field operators satisfy the nonlinear Schrödinger equation:

i∂tψ = −∂2xψ + 2cψ†ψ†ψ



Density-density dynamical correlation function

The density operator is defined by

ρ(x, t) = ψ†(x, t)ψ(x, t)

The density-density dynamical correlation function, G2(x, t), is defined by

⟨ρ(x, t)ρ(0, 0)⟩ = ⟨g|ρ(x, t)ρ(0, 0)|g⟩/⟨g|g⟩
=
∑
µ

⟨g|ρ(x, t)|µ⟩⟨µ|ρ(0, 0)|g⟩/⟨g|g⟩⟨µ|µ⟩

=
∑
µ

ei(Eg−Eµ)t−(Pg−Pµ)xW (µ, λg)

W (µ, λg) = |F (µ, λg)|2/⟨g|g⟩⟨µ|µ⟩

Here, |g⟩ denote the ground state, and λg the set of rapidities for the ground state. The

form factor F (µ, λg) can be evaluated through Slavnov’s formula. It is expressed in terms

of a determinant.



Summary

• Part I: Reduction of spin-s form factors through fusion method

(1) Formula for expressing the spin-s operators with spin-1/2 ones

(revised verion)

(2): “Quantum Inverse Scattering Problem” for spin-s case

We do not solve it for operators but for matrix elements (i.e., form factors).

• Part II: Physical application 1

(1): Multiple-integral representation of arbitrary correlation functions

for the integrable spin-s XXZ spin chain (massless) (revised version )

(2): Numerical confirmation

• Part III: Physical application 2

Form factors of the spin-s quantum impurity in the XXZ chain

• Motivations: Super-integrable chiral Potts chain, Quantum Dynamics


