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1. What I am going to tell.

Fedya and Michio talked about a set of Fermion Creation Operators which create
Local Fields in the XXZ model and its CFT and SG limits. Let us call them the
BJMS Fermions.

I am going to tell about another set of fermion operators creating the SG Form
Factors, which characterize local fields in the SG model. Actually such fermions
were introduced by Babelon-Bernard-Smirnov; so we call them the BBS Fermions.
Our goal is to show that

BBS Fermions = BJMS Fermions
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2. Form factors: what they are

The 2n-particle form factors of a local field Oα in the SG model are a set of
(C2)⊗2n-valued analytic functions in the 2n variables β1, . . . , β2n:

fOα(β1, . . . , β2n)

Recall that the DG model is given by the action

AsG =

∫ [ 1

16π
(∂µϕ(x))2 +

µ2

sin πβ2
2 cos(βϕ(x))

]
d2x.

where the parameter ν is given by ν = 1 − β2. Here Oα is a descendant of the

primary field Φα(z, z̄) = e
iα ν

2
√

1−ν
ϕ(z,z̄)

.

The form factors are characterized by the three axioms:
Symmetry axiom

Sj,j+1(βj − βj+1)fOα(· · · , βj, βj+1, · · · ) = fOα(· · · , βj+1, βj, · · · )
Riemann-Hilbert problem axiom

fOα(β1, · · · , β2n−1, β2n + 2πi) = e−
πiν
1−ν

ασ3
2nfOα(β2n, β1, · · · , · · · , β2n−1) .

Residue axiom

2πi resβ2n=β2n−1+πifOα(β1, · · · , β2n−2, β2n−1, β2n) =(
1 − e−

πiν
1−ν

ασ3
2nS2n−1,1(β2n−1 − β1) · · ·S2n−1,2n−2(β2n−1 − β2n−2)

)
× fOα(β1, · · · , β2n−2) ⊗ s2n−1,2n ,

Note that the shift of the parameter α → α + 2m1−ν
ν

makes no difference in the

axioms. This is a Hint because the BJMS fermions decsribe all α+2m1−ν
ν

together.

You might ask:

What are the form factors?
How are they related to the local operator Oα?

I will answer to this question when we discuss the XXZ lattice.
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3. Form factors: what we do

Our problem is formulated as follows.

The axioms do not tell which descendant Oα+2m 1−ν
ν

we are talking about. We

want to know of which local fields we are constructing form factors. Since BJMS
fermions do tell which local fields they create, we want to know which form factors
we create by the BJMS fermions.

Our strategy is as follows.

We give integral representations of form factors. Integrals are parametrized by a
tower of functions L(n)(S1, . . . , Sn) called deformed Q-forms, where S1, . . . , Sn are
integration variables. For m = 0 and Oα = Φα we have a simple formula for L(n),
which we denote by

M
(n)
0 (S1, · · · , Sn) = 〈Φα〉 · S ∧ S3 ∧ · · · ∧ S2n−1

= 〈Φα〉 ·
n∏

j=1

Sj

∏
1≤i<j≤n

(S2
j − S2

i ).

BBS fermions act on the space of towers, and create general L(n) out of M
(n)
0 .

By definition, form factors fOα(β1, . . . , β2n) are the matrix elements of a local field
Oα between the vacuum state and the excited state of 2n solitons with the rapidity
variables β1, . . . , β2n. If the descendant Oα is created by BJMS fermions, its matrix
elements are explicitly given by the famous ω in the form of determinants. Therefore,
if we identify the towers created by the BBS fermions with the determinants for the
local fields created by the BJMS fermions, we do the job.

Let us do.
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4. BJMS fermions with solitons

Recall BJMS fermions on the XXZ lattice.

Problem is to compute the ratio of the matrix elements between the left and right
eigenvectors of the twisted 松原 transfer matrix.

Zκ
n{q2αS(0)O} =

〈N−, κ+ α|TrS

(
TS,Mq

2κS+2αS(0)O
)
|N+, κ〉

〈N−, κ+ α|TrS (TS,Mq2κS+2αS(0)) |N+, κ〉
.

Here n is the length of the 松原 direction and κ is the twist parameter. O is a
local oeprator. We take the right eigenvector to be the vacuum |N+, κ〉 = |0, κ〉,
the left a 2n particle excited state, where the twist parameter is κ + α. In the
limit n → ∞ the twist parameter is irrelevant. We have |0, κ〉 → |vac〉. In this
limit the eigenvalues of the twisted transfer matrix are parametrized by a set of
2n real numbers β1, . . . , β2n and are

(
2n
n

)
-fold degenerate. Let us denote such an

eigenvector by 〈β1, . . . , β2n; `(n)|. Here `(n) is choosing one of the
(

2n
n

)
eigenvectors.

The functional reduces to the ratio of the matrix elements

Zκ
n{q2αS(0)O} → 〈β1, . . . , β2n; `(n)|q2αS(0)O|vac〉

〈β1, . . . , β2n; `(n)|q2αS(0)|vac〉
The fermionic determinant formula reads

det
(
ω(ζi, ξj; `

(n))
)

i,j=1,···k

=
〈β1, · · · , β2n; `(n)|b∗(ζ1) · · ·b∗(ζk)c

∗(ξk) · · · c∗(ξ1)q2αS(0)|vac〉
〈β1, · · · , β2n; `(n)|q2αS(0)|vac〉

.

Before proceeding to the computation of ω(ζi, ξj; `
(n)), we discuss form factors and

BBS fermions.
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5. Form Factors and Bethe vectors

Form factors are expressed as

fOα(β1, · · · , β2n) = Z(β1, · · · , β2n)

×
∑

I−tI+={1,...,2n}

wε1,··· ,ε2n(β1, · · · , β2n)
e

ν
2(1−ν)

(
P

p∈I−
βp−

P

p∈I+
βp+nπi

)
∏

p∈I−,q∈I+

sinh ν
1−ν

(βp − βq)
· FOα,n(βI−|βI+)

Here Z(β1, · · · , β2n) is a normalization factor, and the most essential part FOα,n(βI−|βI+)
will be given in the next section.

The vectors given by

wε1,··· ,ε2n(β1, · · · , β2n) =
∏

j: εj=+

C(bj)| ↓ 〉

form a basis of (C2)⊗2n. Here bj = e
2ν

1−ν
βj and(

A(t) B(t)
C(t) D(t)

)
a

= S̃a,2n(t/b2n) · · · S̃a,1(t/b1) .

are the monodromy operators. The sum is over the partition of {1, . . . , 2n} into
two parts such that {j; εj = −} = I−, {j; εj = +} = I+ and ](I±) = n. Symmetry
axiom is satisfied.

Now we give an answer to the question: What are the form factors?
To the vector 〈β1, . . . , β2n; `(n)| obtained in the limit n → ∞ there corresponds a

Bethe vector in (C2)⊗2n. The correspondence reads as

〈β1, · · · , β2n; `(n)| ↔ 〈 ↑ |
n∏

j=1

C(uj)

so that we have the equality

〈β1, · · · , β2n; `(n)|Oα|vac〉 = 〈 ↑ |
n∏

j=1

C(uj) · f(β1, · · · , β2n) .
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6. Integrals

Now we give the integral representation to FOα,n(βI−|βI+). Goal is the RH axiom.
We do a fine tuning of polynomials which appear in the integrand.

We use

Bj = eβj , bj = e
2ν

1−ν
βj , S = eσ, s = e

2ν
1−ν

σ.

The latter half are used as integration variables. S has a period 2πi in σ and s
1−ν

ν
πi.

Let χ(σ) be a solution to the difference equations in each period.

χ(σ + 2πi)p(sq4) = χ(σ)p(sq2),

χ(σ + 1−ν
ν
πi)P (SQ) = χ(σ)P (−S) ,

where

P (S) =
2n∏

j=1

(S −Bj) , p(s) =
2n∏

j=1

(s − bj) .

We define a pairing between Laurent polynomials `(s) and L(S) by

(sm, Sk)α = Iα+2m+ 1−ν
ν

k(β1, . . . , β2n),

Iα(β1, . . . , β2n) =

∫
R−i0

χ(σ|β1, . . . , β2n)e
ν

1−ν
ασdσ

Note that changing Sk to Sk+1 is equivalent to the shift α → α+ 1−ν
ν

.
Now we define anti-symmetric n form in s.

`
(n)

I−tI+(s1, · · · , sn) = (`I−tI+,0 ∧ · · · ∧ `I−tI+,n−1) (s1, · · · , sn) ,

`I−tI+,i(s) = a−1
{
pI−(s)

(
pI+,i(s) − pI+,i(sq

2)
)

+ q2(i−n)pI+(sq2)
(
pI−,i(s) − a2pI−,i(sq

2)
)}
,

pI−(s) =
∏
j∈I−

(s − bj), pI+(s) =
∏
j∈I+

(s − bj) ,

Here we used
pI±,i(s) =

[
si−npI±(s)

]
≥ ,

where [ ]≥ signifies the polynomial part.
The Riemann-Hilbert problem axiom (12.2) is satisfied if we set

FOα,n(βI−|βI+) = e
ν

2(1−ν)
(1−α)(

2n
P

j=1
βj−πin)

· (`(n)

I−tI+ , L(n))α ,

where L(n) = L(n)(S1, · · · , Sn|B1, · · · , B2n) is an arbitrary Laurent polynomial which
is anti-symmetric in Si’s and symmetric in Bj’s.
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7. Tower

Final point in the FF axioms is the residue axiom. This leads to a restriction
which relates L(n) to L(n−1). We call a set of Laurent polynomials {L(n)} which
satisfies this restriction for all n a tower. BBS fermions create towers from simpler
ones. It is good to generalize L(n) so that it can have non-zero charge. So, here is

Definition 7.1. We say that L(?) = {L(l,n)(S1, · · · , Sl|B1, · · · , B2n)} l,n≥0
l−n=c

is a tower

of charge c if

L(l,n)(S1, · · · , Sl−1, B|B1, · · · , B2n−2, B,−B)

= (−1)cB
l−1∏
p=1

(B2 − S2
p) · L(l−1,n−1)(S1, · · · , Sl−1|B1, · · · , B2n−2)

holds for all l, n ≥ 1 with l − n = c.

Before fermions, there are local integrals which create towers by multiplications:

L(l,n) 7→ f(I, Ī)L(l,n) where f(I, Ī) is an arbitrary polynomial in

I2j−1,n =
2n∑

k=1

B2j−1
k , Ī2j−1,n =

2n∑
k=1

B
−(2j−1)
k .

Interesting part in the theory of towers come from Q-exact forms, polynomials
which vanish identically inside the pairing.

For any Laurent polynomial Z(S) we define

DA[Z](S) = Z(S)P (S) − AZ(SQ)P (−S), Q = qπi 1−ν
ν

and call it a Q-exact form. For any Laurent polynomial `(s) we have

(`,DA[Z])α = 0 .

There is an important issue, how to choose the representatives of towers modulo
Q-exact forms. There are two ways.

degree restriction: 0 ≤ degSi
L(l,n)(S1, · · · , Sl) ≤ 2n− 1

or
parity restriction: only odd powers in Si’s
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8. BBS fermions

The tower which corresponds to the primary field Φα is given by

M
(n)
0 (S1, · · · , Sn) = 〈Φα〉 · S ∧ S3 ∧ · · · ∧ S2n−1.

This satisfies both degree and parity restrictions.

BBS fermions ψ∗
0(Z), χ∗

0(X) create towers satisfying the degree restriction.(
ψ∗

0(Z)L(?)
)(l+1,n)

(S0, · · · , Sl)

=
1

P (−Z)

1

l!
SkewS0,··· ,Sl

C(Z, S0)L
(l,n)(S1, · · · , Sl) ,

C(S1, S2) =
1

4ν
S1

∑
ε1,ε2=±

P (ε1S1)P (ε2S2)

ε1S1 + ε2S2

, P (S) =
2n∏

j=1

(S −Bj)

(
χ∗

0(Z)L(?)
)(l−1,n)

(S1, · · · , Sl−1)

=
1

P (−Z)

1

2

(
L(l,n)(Z, S1, · · · , Sl−1) − L(l,n)(−Z, S1, · · · , Sl−1)

)
.

One can write their action on M (?) in the determinant form.

(ψ∗(Z1) · · ·ψ∗(Zk)χ
∗(Xk) · · ·χ∗(X1)M

(?))(n)(S1, . . . , Sn)

= 〈Φα〉
(−1)k

k∏
j=1

√
P (Zj)P (−Zj)

k∏
j=1

√
P (Xj)P (−Xj)

× det



0 · · · 0 C(Z1, S1) · · · C(Z1, Sn)
...

...
...

...
0 · · · 0 C(Zk, S1) · · · C(Zk, Sn)
X1 · · · Xk S1 · · · Sn

X3
1 · · · X3

k S3
1 · · · S3

n
...

...
...

...
X2n−1

1 · · · X2n−1
k S2n−1

1 · · · S2n−1
n
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9. BBS fermions (continued)

Modified BBS fermions ψ∗(Z), ψ̄∗(X), χ∗(Z), χ̄∗(X) create towers with only odd
powers in Sj’s. They have the Fourier mode expansions in odd degrees.

ψ∗(Z) =
∞∑

j=1

Z−2j+1ψ∗
2j−1, χ∗(X) =

∞∑
j=1

X−2j+1χ∗
2j−1 ,

ψ̄∗(Z) =
∞∑

j=1

Z2j−1ψ̄∗
2j−1, χ̄∗(X) =

∞∑
j=1

X2j−1χ̄∗
2j−1 .

We change ψ0(Z) to ψ∗(Z) by adding Q-exact forms containing degrees more than
2n, and to ψ̄∗(Z) by adding Q-exact forms containing degrees less than 0. We also
do some Bogolubov transformation as a fine tuning.

The primary field tower S ∧ S3 ∧ · · · ∧ S2n−1 can be considered as Fermi zone.
Roughly speaking the operator χ∗

2j−1 creates a hole at S2n−2j+1, χ̄∗
2j−1 a hole at

S2j−1, ψ∗
2j−1 a particle at S2n+2j−1, and ψ̄∗

2j−1 a particle at S−2j+1.

Recall that the multiplication of S1 · · ·S2n amounts to the shift α → α + 1−ν
ν

.
Moreover, we have

ψ∗
1 · · ·ψ∗

2m−1χ̄
∗
2m−1 · · · χ̄∗

1 M
(?)
0

=
〈Φα〉

〈Φα+2m 1−ν
ν
〉
· ( i

ν
)m

m∏
j=1

cot π
2ν

(αν + (2j − 1)) M (?)
m ,

M (n)
m = 〈Φα+2m 1−ν

ν
〉 · S2m+1 ∧ S2m+2 ∧ · · · ∧ S2n+2m−1

2n∏
j=1

B−m
j .

With all these we conclude that the space of descendants of M
(?)
0 by fermions,

together with the action of the local integrals of motion, has the same character as
that of the space of fields in CFT:

∞⊕
m=−∞

Vα+2 1−ν
ν

m ⊗ Vα+2 1−ν
ν

m ,

where Vα denotes the Virasoro Verma module with highest weight

∆α =
ν2

4(1 − ν)
α(α− 2).
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10. Computation of ω

As we discussed already a new feature in the computation of ω with solitons, is
the

(
2n
n

)
-fold degeneracy of the eigenvalues of the transfer matrix. The computation

goes in three steps.

Step 1 Solving the DDV equation in the limit n → ∞.

The input from the solitons is the positions of holes ξh = ξj = Bν
j (j = 1, . . . , 2n).

The equation becomes linear inhomogeneous integral equation.

log a(ζ) −
∞∫

0

K(ζ/ξ) log a(ξ)
dξ2

ξ2

= log

(
d(ζ)

a(ζ)

)
− 2πiνκ−

∑
h

Φ(ζ/ξh) +
∑

c

Φ(ζ/ξc) .

The conclusion is the explicit formula for

ρ(ζ) =
P (Z)

P (−Z)
.

Step 2 Solving the Boos-Göhmann equation

The dimension of the solution space of the homogeneous equation is
(

2n
n

)
.

G(ζ, ξ) = δ−ξ ψ0(ζ/ξ, α) +
1

2πi

∫
R+e+i0

(
ψ0(qζ/η, α) − ψ0(q

−1ζ/η, α)
)
G(η, ξ)

dη2

η2ρ(η)
.

For any `(n) ∈ P(∧nC2n) we have a solution

G(ζ, ξ; `(n)) =
(`(n), R

(n)
Z,X)α

(`(n),M
(n)
0 )α

,

R
(n)
Z,X(S1, · · · , Sn) = −1

ν

ZX

Z2 −X2

P (Z)

P (−X)

n∏
p=1

X2 − S2
p

Z2 − S2
p

M
(n)
0 (S1, . . . , Sn).

Two theories are merging!
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11. Computation of ω (continued)

Step 3 Substitution in the formula for ω

ω(ζ, ξ) = δ−ζ δ
−
ξ ∆−1

ζ ψ0(ζ/ξ, α) +
1

2πi

∫
R+e+i0

δ−ζ ψ0(ζ/η, α)G(η, ξ)
dη2

η2ρ(η)
.

Result is remarkable.

ω(ζ, ξ; `(n)) =
(`(n), L

(n)
Z,X)α

(`(n),M
(n)
0 )

,

where the polynomial L
(n)
Z,X is given by

L
(n)
Z,X(S1, · · · , Sn) =

1

P (−Z)P (−X)

∣∣∣∣∣∣∣∣∣∣

0 C(Z, S1) · · · C(Z, Sn)
X S1 · · · Sn

X3 S3
1 · · · S3

n
...

...
...

X2n−1 S2n−1
1 · · · S2n−1

n

∣∣∣∣∣∣∣∣∣∣
.

Merci!


